滩羊微卫星标记多态性及与体尺性状关联分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microsatellite Polymorphism and Its Correlation Analysis with Body Size Traits of Tan Sheep
  • 作者:李标 ; 张瑞莹 ; 王小琪 ; 张存芳 ; 段子渊
  • 英文作者:LI Biao;ZHANG Rui-ying;WANG Xiao-qi;ZHANG Cun-fang;DUAN Zi-yuan;College of Agriculture,Ningxia University;Genetic Research Centre,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences;Northwest Institute of Plateau Biology,Chinese Academy of Sciences;
  • 关键词:滩羊 ; 微卫星位点 ; 遗传多态性 ; 体尺 ; 关联分析
  • 英文关键词:Tan sheep;;microsatellite locus;;genetic polymorphism;;body size traits;;correlation analysis
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:宁夏大学农学院;中国科学院遗传与发育生物学研究所资源研究中心;中国科学院西北高原生物研究所;
  • 出版日期:2019-05-06 14:20
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.323
  • 基金:国家重点研发计划重点专项(2106YFC0500709);; 宁夏回族自治区农业综合开发推广项目(NTKJ2017-01-02)
  • 语种:中文;
  • 页:SWJT201906019
  • 页数:7
  • CN:06
  • ISSN:11-2396/Q
  • 分类号:137-143
摘要
滩羊是我国特有的蒙古羊品种,肉质鲜美但生长缓慢。通过筛选的29个高多态性微卫星标记,对宁夏盐池滩羊种羊场基础母羊群体用随机抽样法检测了96个成年个体,测量了体重和体尺数据,分析了其微卫星标记遗传多样性、群体遗传结构及分子标记与表型的相关关系。结果显示,微卫星标记平均等位基因数9.5,平均有效等位基因数4.5,平均期望杂合度0.72,平均观测杂合度0.64,平均多态信息含量0.69;滩羊基础母羊群体保持了丰富的遗传多样性;关联分析结果显示MAF33与滩羊的体高、胸深显著相关,BMS1788与荐高、胸围显著相关,而BL41、BMS835、BOVILS56、MAF33和BMS500与管围极显著关联。这些标记对未来滩羊的分子辅助育种有所帮助。
        Tan sheep,a special Mongolia sheep breed in China,is famous with its delicious meat and slow growth rate. In our study,a total of 29 high polymorphic microsatellite markers were used to screen 96 Tan sheep individuals,which were sampled from the basic ewe population in Yanchi Tan sheep reservation farm in the Ningxia Hui Autonomous Region,China. Analysis of genetic diversity,population structure and co-relationship between molecular genotype and measured phenotype(body weight and body size traits)of the 96 samples were carried out,and the following results were obtained :the average(Na)and mean effective(Ne)numbers of alleles,the average expected heterozygosity(He),the average observed heterozygosity(Ho),and the average polymorphism information content(PIC)were 9.5,4.5,0.72,0.64 and 0.69,respectively. The sampled population held high genetic diversity,the correlation between MAF33 and body height and chest depth existed,and BMS1788 was associated with rump height and chest circumference. Also,5 microsatellite markers including BL41,BMS835,BOVILS56,MAF33 and BMS500 were significantly correlated with the cannon circumference. These six microsatellite loci may be useful in further marker-assisted breeding for Tan sheep.
引文
[1]赵有璋.羊生产学[M].第2版.北京:中国农业出版社,2003:117.
    [2]杨秀芳.宁夏盐池滩羊品种资源的保护现状及发展建议[J].中国草食动物, 2006(6):36-37.
    [3]毛宁,文志林,王菊花.宁夏盐池县滩羊产业发展面临的问题及对策[J].畜牧与饲料科学, 2011, 32(5):55-56.
    [4]云华,李颖康.宁夏滩羊及其品种选育[J].当代畜牧, 2008(3):41-43.
    [5]侯鹏霞.滩羊羔羊早期补饲以及不同体重阶段羊肉品质的研究[D].银川:宁夏大学, 2014.
    [6] Siju S, Dhanya K, Bhaskara, et al. Methods for development of microsatellite markers:An overview[J]. Not Sci Biol, 2014, 6(1):1-13.
    [7] David C, Quirino C, Vega W, et al. Diversity of indigenous sheep of an isolated population[J]. BMC Vet Res, 2018, 14(1):350.
    [8] Tapio M, Ozerov M, Tapio I, et al. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia[J]. BMC Genetics, 2010, 11(1):1-11.
    [9] Erwin J, Vargas K, Blais B, et al. Genetic assessment of a big horn sheep population expansion in the Silver Bell Mountains,Arizona[J]. Peer J, 2018, 6:e5978.
    [10]陈仁金,杨章平,汤晓良,等.利用微卫星标记分析滩羊群体的遗传多样性及遗传分化[J].扬州大学学报:农业与生命科学版, 2010, 31(4):66-72.
    [11]汤晓良.利用微卫星标记分析滩羊群体的遗传多样性与遗传分化[D].扬州:扬州大学, 2008.
    [12]闫路娜,张德兴.种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响[J].动物学报, 2004(2):279-290.
    [13]李鸥,赵莹莹,郭娜,等.草鱼种群SSR分析中样本量及标记数量对遗传多度的影响[J].动物学研究, 2009, 30(2):121-130.
    [14] Pei J, Bao P, Chu M, et al. Evaluation of 17 microsatellite markers for parentage testing and individual identification of domestic yak(Bos grunniens)[J]. Peer J, 2018, 6(11):5946-5963.
    [15]孙业良,刘国庆,王刚,等.绵羊微卫星标记与体重的相关分析[J].中国农业科学, 2006(10):2095-2100.
    [16]牛俊巍,李红然,段恋,等.利用TP-M13-SSR技术分析我国两个地方猪种的遗传多样性[J].中国动物分类学报, 2013,38(2), 413-420.
    [17] Hulce D, Li X, Snyderleiby T, et al. GeneMarker genotyping software:Tools to increase the statistical power of DNA fragment analysis[J]. J Biomol Tech, 2011, 22(Suppl):35-36.
    [18] Dias P, Julier B, et al. Genetic diversity in red clover(Trifolium pratense L.)revealed by morphological and microsatellite(SSR)markers[J]. Euphytica, 2008, 160(2):189-205.
    [19]Foss?y F, Johnsen A, Lifjeld JT. Multiple genetic benefits of female promiscuity in a socially monogamous passerine[J]. Evolution,2010, 62(1):145-156.
    [20]李艳香.中国岩羊(Pseudois nayaur)遗传多样性与遗传结构研究[D].哈尔滨:东北林业大学, 2014.
    [21] Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data:dominant markers and null alleles[J]. Mol Ecol Notes, 2007, 7(4):574-578.
    [22]《中国羊品种志》编写组.中国羊品种志[M].上海:上海科学技术出版社, 1989.
    [23]吉帅.舍饲滩羊生长发育与肉品质变化规律的研究[D].银川:宁夏大学, 2013.
    [24]钱文熙,阎宏,张苏江,等.放牧、舍饲滩羊肉质理化特性研究[J].黑龙江畜牧兽医, 2007(3):37-40.
    [25]周静静,马红彬,周瑶,等.轮牧方式对荒漠草原滩羊牧食特征、体重及繁殖性能的影响[J].中国农业科学, 2017, 50(8):1525-1534.
    [26] Arthy V, Venkataramanan R, Sivaselvam SN,et al. Genetic evaluation of growth in farmers’ flocks of Madras Red sheep under long-term selection in a group breeding[J]. Trop Anim Health Prod. 2018, 50(7):1463-1471.
    [27] Barker J, Moore S, Hetzel D, et al. Genetic diversity of Asian water buffalo(Bubalus bubalis):microsatellite variation and a comparison with protein coding loci[J]. Animal Genetics, 2015,28(2):103-115.
    [28] Botstein D. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet,1980, 32(3):314-331.
    [29] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3):583-590.
    [30]娄渊根.运用微卫星标记方法对中国绵羊遗传多样性研究[D].洛阳:河南科技大学, 2011.
    [31]张相伦,游伟,靳青,等. 4个肉牛品种微卫星多态性分析[J].中国畜牧兽医, 2018, 45(1):162-170.
    [32]朱雯静,张吉清.宁夏盐池滩羊产业发展现状分析[J].现代畜牧科技, 2016(9):3-4.
    [33]李向阳,胡成华,赵玉民,等. 5个群体微卫星DNA多态性的研究[J].吉林农业科学, 2008, 33(3):37-40.
    [34]古丽尼沙·吐拉甫.新疆地方山羊品种微卫星标记遗传多态性与部分经济性状的关联性分析[D].乌鲁木齐:新疆农业大学, 2013.
    [35]许汉峰,赵宗胜,李广录,等.绵羊13个微卫星基因座对毛用性状的相关性研究[J].石河子大学学报:自然科学版,2008(4):459-464.
    [36] Margawati E, Subandriyo, Fullard K, et al. Detection of quantitative trait loci(QTL)affecting carcass traits in backcross family of indonesian thin tail sheep[J]. Genet Sel Evol, 2009, 41(1):34-51.
    [37]乌仁套迪,斯琴图雅,白俊艳.阿拉善沙漠双峰驼的微卫星多态性与体尺性状的关联分析[J].畜牧与兽医, 2018, 50(9):4-9.