金河湾城市湿地浮游植物功能类群演替及驱动因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on phytoplankton functional group succession and driving parameters in the Jinhewan Urban Wetland
  • 作者:范小晨 ; 代存芳 ; 陆欣鑫 ; 范亚文
  • 英文作者:FAN Xiaochen;DAI Cunfang;LU Xinxin;FAN Yawen;Heilongjiang Provincial Key Laboratory of Botany,College of Life Science and Technology,Harbin Normal University;
  • 关键词:金河湾湿地 ; 浮游植物 ; 功能类群 ; 演替 ; 驱动因子
  • 英文关键词:Jinhewan Wetland;;phytoplankton;;functional groups;;succession;;driving factors
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:哈尔滨师范大学生命科学与技术学院植物学省级重点实验室;
  • 出版日期:2018-08-23
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(31470308)
  • 语种:中文;
  • 页:STXB201816011
  • 页数:13
  • CN:16
  • ISSN:11-2031/Q
  • 分类号:109-121
摘要
于2015年春(5月)、夏(8月)、秋(10月)三季,在金河湾湿地4类水体共设置12个采样点对浮游植物功能类群演替及与水环境变量关系进行分析。研究期间共鉴定浮游植物376个种,隶属于8门10纲19目19科101属。浮游植物种类组成主要以硅藻门(39.62%)和绿藻门(35.64%)为主,其次裸藻门(10.11%)和蓝藻门(9.84%)的藻类所占比例较高,甲藻门、隐藻门、金藻门和黄藻门所占比例较低。调查期间金河湾湿地浮游植物细胞丰度季节间差异显著(P<0.05),整体上呈现夏季>秋季>春季的规律。春、夏、秋三季共划分20个不同的功能类群,双因素方差分析(Two-way ANOVA)和单因子交叉相似性检验(One-way ANOSIM)表明:代表性功能类群在季节间演替明显(P<0.05),群落构成差异显著(P<0.01)。SIMPER分析指出,S2/H1/B/D/Lo/X1/MP是引起金河湾湿地各季节之间浮游植物群落结构差异的主要贡献类群。通过代表性功能类群和10个水环境变量的典范对应分析(CCA)探索环境变量与功能类群演替的关系。经分析,总氮(TN)是驱动金河湾湿地浮游植物功能类群演替的主要环境变量,电导率(SpCond)、pH与功能类群演替密切相关。
        The Jinhewan Wetland is located in northeastern China,and plays an important role in protecting the biodiversity and regulating the microclimate in Harbin City. Although phytoplankton community studies on wetlands from northern China have increased recently,studies of the phytoplankton community in the Jinhewan Wetland are limited. To better understand processes of phytoplankton community succession in relation to environmental parameters,a detailed survey of phytoplankton functional groups in spring,summer,and autumn are necessary. Therefore,we studied the phytoplankton functional groups and 10 environmental parameters during spring(May),summer(August),and autumn(July). The aim of this study was to understand the succession process of phytoplankton functional groups between seasons,and furthermore explore the dynamic parameters in the Jinhewan Wetland. In this study,phytoplankton were qualitatively and quantitatively collected from 12 sampling sites in four typical habitats. A total of 376 phytoplankton species were identified,belonging to 8 families,10 classes, 19 orders, 19 families, and 101 genera. The phytoplankton species composition was dominated by Bacillariophyta(39. 62%) and Chlorophyta(35. 64%), followed by Euglenophyta(10. 11%) and Cyanobacteria(9.84%),and the proportions of Pyrrophyta,Cryptophyta,Chrysophyta,and Xanthophyceae were relatively low. Our study showed that the average abundance of phytoplankton in the Jinhewan Wetland was significantly different(P < 0. 05). Theaverage abundance in summer was the highest(12.90 × 10~6 ind/L),followed by autumn(5.95 × 10~6 ind/L),and spring(2.55 × 10~6 ind/L). The range of change was 0.97—14.83 × 10~6 ind/L,ranging between 0.47—30.17 × 10~6,5.95 ×10~6,and 2.55 × 10~6 ind/L,respectively. We arranged phytoplankton taxa data from spring,summer,and autumn into 20 functional groups. Groups B/D/F/H1/J/MP/S2/X1 were predominant in spring,groups B/D/H1/Lo/S1/S2/SN/MP/Y were predominant in summer,and groups B/D/F/H1/J/MP/S2/X1 were predominant in autumn. A two-way ANOVA and single-factor cross-similarity test(one-way ANOSIM) showed that there were significant differences in representative functional groups between spring,summer,and autumn(P < 0. 05),the representative functional group succession was obvious(P < 0. 05),and functional group assemblages were significantly different(P < 0. 01). In addition,a SIMPER analysis indicated that the primary contributing phytoplankton functional groups were S2/H1/B/D/Lo/X1/MP in the Jinhewan Wetland. A Canonical Correspondence Analysis(CCA) based on representative functional groups of 10 environmental variables revealed that total nitrogen(TN) was the primary factor affecting the phytoplankton functional group succession in this wetland,and conductivity(SpCond) and pH were closely related to phytoplankton functional group distribution.
引文
[1]Cardoso S J,Roland F,Loverde-Oliveira S M,de Moraes Huszar V L.Phytoplankton abundance,biomass and diversity within and between Pantanal wetland habitats.Limnologica-Ecology and Management of Inland Waters,2012,42(3):235-241.
    [2]Mitsch W J,Gosselink J G.Wetlands.4th ed.Hoboken,NJ,USA:John Wiley&Sons,2007.
    [3]SebastiáM T,Rodilla M,Sanchis J A,Altur V,Gadea I,Falco S.Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast.Agriculture,Ecosystems&Environment,2012,152:10-20.
    [4]Fang L,Wong P K,Lin L I,Lan C,Qiu J W.Impact of invasive apple snails in Hong Kong on wetland macrophytes,nutrients,phytoplankton and filamentous algae.Freshwater Biology,2010,55(6):1191-1204.
    [5]Wondmagegne T,Wondie A,Mingist M,Vijverberg J.Seasonality in abundance,biomass and production of the phytoplankton of Welala and Shesher wetlands,Lake Tana Sub-Basin(Ethiopia).Journal of Water Resource&Protection,2012,4(10):877-884.
    [6]Roy A,Sarkar D,Dutta S,Roy R,Mondal S,Roy M,Mitra A.Phytoplankton community of East Kolkata Wetlands as an indicator of the water quality.International Journal of Advanced Research,2017,5(4):104-110.
    [7]Reynolds C S,Huszar V,Kruk C,Naselli-Flores L,Melo S.Towards a functional classification of the freshwater phytoplankton.Journal of Plankton Research,2002,24(5):417-428.
    [8]Padisák J,Crossetti L O,Naselli-Flores L.Use and misuse in the application of the phytoplankton functional classification:a critical review with updates.Hydrobiologia,2009,621(1):1-19.
    [9]胡韧,蓝于倩,肖利娟,韩博平.淡水浮游植物功能群的概念、划分方法和应用.湖泊科学,2015,27(1):11-23.
    [10]Kruk C,Mazzeo N,Lacerot G,Reynolds C S.Classification schemes for phytoplankton:a local validation of a functional approach to the analysis of species temporal replacement.Journal of Plankton Research,2002,24(9):901-912.
    [11]Padisák J,Borics G,Fehér G,Grigorszky I,Oldal I,Schmidt A,Zámbóné-Doma Z.Dominant species,functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes.Hydrobiologia,2003,502(1/3):157-168.
    [12]Sevindik T O,elik K,Naselli-Flores L.Spatial heterogeneity and seasonal succession of phytoplankton functional groups along the vertical gradient in a mesotrophic reservoir.Annales de Limnologie-International Journal of Limnology,2017,53:129-141.
    [13]封晓梅.《湿地公约》与我国的湿地保护[D].青岛:中国海洋大学,2008.
    [14]殷康前,倪晋仁.湿地研究综述.生态学报,1998,18(5):539-546.
    [15]周俊.苏州湿地公园藻类群落结构的研究[D].上海:上海师范大学,2012.
    [16]陆强,陈慧丽,邵晓阳,王莹莹,陶敏,何京,唐龙.杭州西溪湿地大型底栖动物群落特征及与环境因子的关系.生态学报,2013,33(9):2803-2815.
    [17]周芳菲.基于AHP的哈尔滨金河湾湿地公园景观体验优化策略研究[D].哈尔滨:哈尔滨工业大学,2014.
    [18]马婷慧.哈尔滨金河湾湿地公园POE调查及优化策略研究[D].哈尔滨:哈尔滨工业大学,2013.
    [19]林聪,李志国,梁庆宇,王影,范亚文.黑龙江省金河湾湿地藻类植物的初步研究.哈尔滨师范大学:自然科学学报,2015,31(4):92-96.
    [20]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [21]胡鸿钧,魏印心.中国淡水藻类—系统/分类及生态.北京:科学出版社,2006.
    [22]Bao W M,Wang Q X,Reimer C W.Diatoms from the Changbaishan Mountain area.Bulletin of Botanical Research,1992,12(2):125-143.
    [23]Rumrich,U.,Lange-Bertalot,H.and Rumrich,M.2000.Diatoms of the Andes from Venezuela to Patagonia/Tierradel Fuego.Icon.Diat.9:1–673.
    [24]Xiao L J,Wang T,Hu R,Han B P,Wang S,Qian X,Padisák J.Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir.Water Research,2011,45(16):5099-5109.
    [25]Reynolds C S.Ecology of Phytoplankton.Cambridge:Cambridge University Press,2006.
    [26]刘永梅,刘永定,李敦海,沈银武.氮磷对水华束丝藻生长及生理特性的影响.水生生物学报,2007,31(6):774-779.
    [27]Droop M R.Some thoughts on nutrient limitation in algae.Journal of Phycology,1973,9(3):264-272.
    [28]Rochelle-Newall E J,Chu V T,Pringault O,Amouroux D,Arfi R,Bettarel Y,Bouvier T,Bouvier C,Got P,Nguyen T M H,Mari X,Navarro P,Duong T N,Cao T T T,Pham T T,Ouillon S,Torréton J P.Phytoplankton distribution and productivity in a highly turbid,tropical coastal system(Bach Dang Estuary,Vietnam).Marine Pollution Bulletin,2011,62(11):2317-2329.
    [29]Pavlou S P,Friederich G E,Macisaac J J.Quantitative determination of total organic nitrogen and isotope enrichment in marine phytoplankton.Analytical Biochemistry,1974,61(1):16-24.
    [30]Paparazzo F E,Williams G N,Pisoni J P,Solís M,Esteves J L,Varela D E.Linking phytoplankton nitrogen uptake,macronutrients and chlorophyll-a in SW Atlantic waters:The case of the Gulf of San Jorge,Argentina.Journal of Marine Systems,2017,172:43-50.
    [31]秦伯强,杨桂军,马健荣,邓建明,李未,吴挺峰,刘丽贞,高光,朱广伟,张运林.太湖蓝藻水华“暴发”的动态特征及其机制.科学通报,2016,61(7):759-770.
    [32]Varnoosfaderani A M,Khoii J A,Rafiee G R.Investigating the effect of Biodrof systems based on algae-bacterial biofilm for removing total Nitrogen,Phosphorus from domestic wastewater.Journal of Aquatic Ecology,2015,4(4):18-18.
    [33]王英英.不同氮磷质量浓度对太浦河四种优势藻类生长影响的研究[D].上海:上海师范大学,2016.
    [34]Redfield A C.The biological control of chemical factors in the environment.Science Progress,1960,11:150-170.
    [35]Flores L N,Barone R.Phytoplankton dynamics in two reservoirs with different trophic state(Lake Rosamarina and Lake Arancio,Sicily,Italy).Hydrobiologia,1998,369-370:163-178.
    [36]Trebitz A S,Nestlerode J A,Herlihy A T.USA-scale patterns in wetland water quality as determined from the 2011 National Wetland Condition Assessment.Environmental Monitoring&Assessment,2017.
    [37]陆欣鑫,刘妍,范亚文.呼兰河湿地夏、秋两季浮游植物功能分组演替及其驱动因子.生态学报,2014,34(5):1264-1273.
    [38]Jin M,Champagne P,Hall G.Effects of different substrates in the mitigation of algae-induced high p H wastewaters in a pilot-scale free water surface wetland system.Water Science&Technology,2017,75(1):1-10.
    [39]Ter Braak C J F,Van Dame H.Inferring p H from diatoms:a comparison of old and new calibration methods.Hydrobiologia,1989,178(3):209-223.