1960-2015年淮河流域异常初、终霜日时空变化及其影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial and temporal changes of the abnormal first and last frosts and their influencing factors in Huaihe River Basin from 1960 to 2015
  • 作者:马尚谦 ; 张勃 ; 杨文义 ; 杨梅 ; 魏堃 ; 李帅 ; 何航 ; 候启 ; 魏怀东
  • 英文作者:MA Shang-qian;ZHANG Bo;YANG Wen-yi;YANG Mei;WEI Kun;LI Shuai;HE Hang;HOU Qi;WEI Huai-dong;College of Geography and Environment Science, Northwest Normal University;The School of Social Development and Public Policy, Beijing Normal University;Gansu Key Laboratory of Desertification Combating, Minqin National Station for Desert Steppe Ecosystem Research, Gansu Institute of Desertification Combating Research;
  • 关键词:农业气象学 ; 淮河流域 ; 气候变暖 ; 异常初、终霜日 ; 频率
  • 英文关键词:agro-meteorology;;Huaihe River Basin;;climate change;;abnormal first and last frost date;;frequency
  • 中文刊名:ZRZX
  • 英文刊名:Journal of Natural Resources
  • 机构:西北师范大学地理与环境科学学院;北京师范大学社会发展与公共政策学院;甘肃省荒漠化防治重点实验室甘肃民勤荒漠草地生态系统国家野外科学观测研究站甘肃省治沙研究所;
  • 出版日期:2019-02-22 12:22
  • 出版单位:自然资源学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金项目(41561024);; 高校博士学科点专项科研基金项目(20136203110002)
  • 语种:中文;
  • 页:ZRZX201902012
  • 页数:15
  • CN:02
  • ISSN:11-1912/N
  • 分类号:141-155
摘要
农作物生长关键期发生的异常初、终霜日,对农业生产造成极大损失。准确了解并掌握异常初、终霜日在淮河流域的变化规律及成因,有利于做好霜冻预报服务工作,减轻霜冻灾害的影响,对保障国家粮食稳产、高产、安全具有重大的意义。基于淮河流域1960-2015年61个气象站点逐日地面0 cm最低气温资料,采用标准差计算了初、终霜日的稳定性,使用概率密度函数定义了异常初、终霜日,利用IDW插值方法反映气候态转变前后异常初、终霜日稳定性和频率,同时利用线性倾向估计、M-K、滑动t检验和累计距平法得到气温的变化趋势及突变年份,相关系数法用来分析环流指数、气温、初霜日、终霜日之间的关系。通过研究得出以下结论:(1)淮河流域近56年来平均气温以0.18℃·10 a-1(P<0.01)的速率呈现显著的上升趋势并且在1993年发生突变,气候态的转型促进了初霜日的推迟和终霜日的提前。(2)气候态的转变导致初、终霜日的稳定性降低,初、终霜日稳定性随经、纬度的增加而变好,初霜日稳定性随海拔升高而变好,终霜日稳定性随海拔升高而变化不显著,终霜日稳定性好于初霜日稳定性。(3)偏早初霜日频率>偏晚终霜日频率>特早初霜日频率>特晚终霜日频率,且在气候态转型后,异常初、终霜日的频率趋于降低,稳定在0~20%之间,异常初霜日发生频率整体高于异常终霜日,气候变暖对初霜日的影响大于终霜日。(4)异常初、终霜日频率时空分布差异显著,高频年代分别为1970s和1960s,低频年代为2000s。随着气候的转变,虽然异常初、终霜日频率逐步趋于稳定且处于低频趋势,但是气候转变促进了淮河流域东南部和南部的特早初霜日频率增加,南部偏早初霜日发生频率范围增加。东北部的偏晚初霜日发生频率增加,同时东南部的特晚终霜日发生频率也明显增加。(5)北半球9月极涡面积越小,淮河流域初霜日越迟(R=-0.41,P<0.01)。10月副高面积增加,初霜日推迟(R=0.39,P<0.01);2月极涡面积减小,终霜日提前(R=0.29,P<0.05)。4月副高面积增大,终霜日提前(R=-0.15,P>0.05),并且在1990年后提前趋势加快。
        The abnormal first frost date and last frost date that occur in the critical period of crop growth will cause great losses to crop yields. It is of great significance to know and grasp the changing rules of abnormal frost date index accurately in the Huaihe River Basin to ensure the stable, high and safe grain yield of China. Ground 0 cm daily minimum temperature collected at 61 meteorological stations were used to identify the first and the last frost dates.The standard deviation was used to calculate the stability of the first and the last frost dates and the probability density function was used to define abnormal first and last frost dates.Meanwhile, IDW interpolation method was adopted to reflect the stability of first and last frost dates and the frequency of abnormal frost date before and after the transition of climate state.Moreover, linear trend estimation, Mann-Kendall mutation test, sliding t-test and cumulative averaging method were employed to obtain the mutation year in temperature. And the effect of the circulation index and air temperature on the first and the last frost dates was analyzed by correlation coefficient method. The following conclusions can be drawn from the analysis above:(1) The mean temperature of Huaihe River Basin in the period 1960-2015 showed a significant upward trend at a rate of 0.18 ℃· 10 a-1(P<0.01) and the mutation year happened in1993. The transition of climate state promoted the postponement of the first frost date and the advancement of the last frost date.(2) The transition of climate state led to the decrease of the stability of first and last frost dates. The stability of first and last frost dates became much better with the increase of latitude and longitude. The stability of the first frost date became better with the increase of elevation. But the change of the last frost date is not significant even when the elevation increases. The stability of the last frost date is better than that of the first frost date.(3) There was a descending order among the frequency of earlier first frost date, later last frost date, special early first frost date, and special late last frost date. And after the transition of climatological state, the frequency of abnormal first and last frost days tends to decrease and be stable at 0-20%. On the whole, the frequency of abnormal first frost date is higher than that of abnormal last frost date. The impact of climate warming is greater on the first frost date than on the last frost date.(4) The spatial distribution of abnormal first and last frost dates was significantly different, the high frequency of which was observed in the 1970 s and the 1960 s, respectively, and the low frequency of which was found in the 2000 s. Although the frequency of abnormal first and last frost dates was gradually stabilized and remained at a low level, the transition of climate promoted the increase of the frequency of special early first date in the southeast and south parts, partial early first frost date in the south, partial late last frost date in the northeast, and special late frost date in the southeast of the Huaihe River Basin respectively.(5) The smaller the polar vortex area is in September in the northern hemisphere,the later the first frost date is(R=-0.41, P< 0.01); the smaller the polar vortex area is in February, the earlier the last frost date would be(R=0.29, P<0.01); the larger the subtropical high is in October, the later the first frost date is(R=0.39, P<0.05); the larger the subtropical high is in April, the earlier the last frost date is(R=-0.15, P>0.05). Moreover, the tendency ahead of schedule was accelerated after 1990. The result of this article is good for frost forecast services and mitigation of frost disasters.
引文
[1]冯秀藻.农业气象学原理.北京:气象出版社,1991:127-143.[FENG X Z.Agricultural Meteorology Principles.Beijing:China Meteorological Press,1991:127-143.]
    [2]REID P C,HARI R E,BEAUGRAND G,et al.Global impacts of the 1980s regime shift.Global Change Biology,2016,22(2):682-689.
    [3]WOOLWAY R I,DOKULIL M T,MARSZELEWSKI W,et al.Warming of central European lakes and their response to the 1980s climate regime shift.Climatic Change,2017,142(34):505-520.
    [4]YASUNAKA S,HANAWA K.Regime shifts in the Northern Hemisphere SST field:Revisited in relation to tropical variations.Journal of the Meteorological Society of Japan,2003,81(2):415-424.
    [5]XIAO D,LI J P,ZHAO P.Four-dimensional structures and physical process of the decadal abrupt changes of the northern extra tropical ocean-atmosphere system in 1980s.International Journal of Climatology,2012,32(7):983-994.
    [6]FIGUAR S,LIVINGSTONE D M,HOEHN E,et al.Regime shift in groundwater temperature triggered by the Arctic Oscillation.Geophysical Research Letters,2011,38(23):23401-23410.
    [7]HUANG J B,ZHANG X D,ZHANG Q Y,et al.Recently amplified arctic warming has contributed to a continual global warming trend.Nature Climate Change,2017,20(7):875-879.
    [8]孙杨,张雪芹,郑度.气候变暖对西北干旱区农业气候资源的影响.自然资源学报,2010,25(7):1153-1162.[SUN Y,ZHANG X Q,ZHENG D.The impact of climate warming on agricultural climate resources in the arid region of Northwest China.Journal of Natural Resources,2010,25(7):1153-1162.]
    [9]ANANDHI A,PERUMAL S,GOWDA P H,et al.Long-term spatial and temporal trends in frost indices in Kansas,USA.Climatic Change,2013,120(12):169-181.
    [10]EASRETLING D R.Recent changes in frost days and the frost-free season in the United States.Bulletin of the American Meteorological Society,2002,83(9):1327-1332.
    [11]梁宏,王培娟,章建成,等.1960-2011年东北地区热量资源时空变化特征.自然资源学报,2014,29(3):466-479.[LI-ANG H,WANG P J,ZHANG J C,et al.Spatial and temporal distribution of variation in heat resource over Northeast China during the period from 1960 to 2011.Journal of Natural Resources,2014,29(3):466-479.]
    [12]汪宝龙,张明军,魏军林,等.西北地区近50 a气温和降水极端事件的变化特征.自然资源学报,2012,27(10):1720-1733.[WANG B L,ZHANG M J,WEI J L,et al.The change in extreme events of temperature and precipitation over Northwest China in recent 50 years.Journal of Natural Resources,2012,27(10):1720-1733.]
    [13]宁晓菊,张丽君,杨群涛,等.1951年以来中国无霜期的变化趋势.地理学报,2015,70(11):1811-1822.[NING X J,ZHANG L J,YANG Q T,et al.China frost-free period since 1951 trends.Acta Geographica Sinica,2015,70(11):1811-1822.]
    [14]娄伟平,吉宗伟,邱新法,等.茶叶霜冻气象指数保险设计.自然资源学报,2011,26(12):2050-2060.[LOU W P,JI ZW,QIU X F,et al.Design of weather index insurance contact for tea frost.Journal of Natural Resources,2011,26(12):2050-2060.]
    [15]马尚谦,张勃,唐敏,等.1960-2015年淮河流域初终霜日时空变化分析.中国农业气象,2018,39(7):468-478.[MA SQ,ZHANG B,TANG M,et al.Analysis on the temporal and spatial changes of frost date in the Huaihe River Basin from 1960 to 2015.Chinese Journal of Agrometeorology,2018,39(7):468-478.]
    [16]LIU Q,PIAO S L,JANSSENS I A,et al.Extension of the growing season increases vegetation exposure to frost.Nature Communication,2018,9(1):426-435.
    [17]陈乾金,夏洪星,张永山.我国江淮流域近40年异常初、终霜冻的分析.应用气象学报,1995,6(1):50-55.[CHEN QJ,XIA H X,ZHANG Y S.Analyses of unusual first and last frost during the last 40 years in the Yangtze River and Huaihe River Basin.Journal of Applied Meteorological Science,1995,6(1):50-55.]
    [18]梁进秋,贾利芳,何正梅,等.大同市近50年霜冻及其异常事件变化特征分析.中国农业气象,2010,31(1):124-128.[LIANG J Q,JIA L F,HE Z M,et al.Variation analysis on frost and unusual events in Datong city in recent 50 years.Chinese Journal of Agrometeorology,2010,31(1):124-128.]
    [19]王涛,吕昌河,于伯华.基于WOFOST模型的京津冀地区冬小麦生产潜力评价.自然资源学报,2010,25(3):475-487.[WANG T,LYU C H,YU B H.Assessing the potential productivity of winter wheat using WOFOST in the BeijingTianjin-Hebei region.Journal of Natural Resources,2010,25(3):475-487.]
    [20]韩荣青,李维京,艾婉秀,等.中国北方初霜冻日期变化及其对农业的影响.地理学报,2010,65(5):525-532.[HANR Q,LI W J,AI W X,et al.The climatic variability and influence of first frost dates in Northern China.Acta Geographica Sinica,2010,65(5):525-532.]
    [21]CRIMP S,BAKAR K S,KOKIC P,et al.Bayesian space-time model to analysis frost risk for agriculture in Southeast Australia.International Journal of Climatology,2015,35(8):2092-2108.
    [22]叶殿秀,张勇.1961-2007年我国霜冻变化特征.应用气象学报,2008,19(6):661-665.[YE D X,ZHANG Y.Characteristics of frost changes from 1961 to 2007 over China.Journal of Applied Meteorological Science,2008,19(6):661-665.]
    [23]李芬,张建新.山西近50年初霜冻的区域特征.灾害学,2013,28(4):104-109.[LI F,ZHANG J X.Regional characteristics of the first frost over Shanxi province in latest 5 decades.Journal of Catastrophology,2013,28(4):104-109.]
    [24]陈乾金,张永山.华北异常初、终霜冻气候特征的研究.自然灾害学报,1995,4(3):33-39.[CHEN Q J,ZHANG Y S.Study on climatic characteristics of anomalous early frost in North China.Journal of Natural Disasters,1995,4(3):33-39.]
    [25]杨荣珍,朱伟军,岳艳霞,等.石家庄市霜冻期的气候异常特征分析.气象与减灾研究,2011,34(2):67-70.[YANG RZ,ZHU W J,YUE Y X,et al.Analysis of the climate anomalies of frost in Shijiazhuang.Meteorology and Disaster Reduction Research,2011,34(2):67-70.]
    [26]杜军,宁斌.雅鲁藏布江中游近40年异常初终霜冻分析.气象,2006,32(9):84-89.[DU J,NING B.Analysis of anomalous first/last frost over middle reaches of the Yarlung Zangbo River in Tibet from 1961 to 2000.Meteorological Monthly,2006,32(9):84-89.]
    [27]马彬,张勃,贾艳青,等.1961-2014年中国内陆农业区异常初、终霜日时空变化及其与环流因子的关系.气象学报,2017,75(4):661-671.[MA B,ZHANG B,JIA Y Q,et al.Spatial and temporal variation of anomalous early and final frost days and its relationship with circulation factors in inland agricultural areas of China during 1961-2014.Acta Meteorological Sinica,2017,75(4):661-671.]
    [28]ERLATE E,TURKE M.Analysis of observed variability and trends in numbers of frost days in Turkey for the period1950-2010.International Journal of Climatology,2012,32(12):1889-1898.
    [29]贾艳青,张勃,张耀宗,等.城市化对长三角地区极端气温影响的时空分异研究.自然资源学报,2017,32(5):814-828.[JIA Y Q,ZHANG B,ZHANG Y Z,et al.Effect of urbanization on spatial and temporal variation of extreme temperature events in the Yangtze River Delta.Journal of Natural Resources,2017,32(5):814-828.]
    [30]王媛媛,张勃.1971年至2010年陇东地区霜冻与积温变化特征.资源科学,2012,34(11):2181-2188.[WANG Y Y,ZHANG B.Characteristics of frost days and accumulated temperature in Eastern Gansu over the last 40 years.Resources Science,2012,34(11):2181-2188.]
    [31]马琼,张勃.1980-2014年黄土高原霜冻时空变化及冬小麦晚霜冻危险性研究.兰州:西北师范大学,2016.[MA Q,ZHANG B.Spatio-temporal change of last frost risk of winter wheat in the Loess from 1980 to 2014.Lanzhou:Northwest Normal University,2016.]
    [32]王春乙,张继权,霍治国,等.农业气象灾害风险评估研究进展与展望.气象学报,2015,73(1):1-19.[WANG C Y,ZHANG J Q,HUO Z G,et al.Progress and prospect of agricultural meteorological disaster risk assessment.Acta Meteorologica Sinica,2015,73(1):1-19.]
    [33]马树庆,杨菲芸.我国霜期、霜冻时空特征及其对气候变暖的响应.气象灾害防御,2015,22(2):1-4.[MA S Q,YANG F Y.Spatial and temporal characteristics of frost date in China and its response to climate warming.Meteorological Disaster Prevention,2015,22(2):1-4.]
    [34]拉巴次仁,索朗加措,白玛.1981-2010年西藏霜冻日数的变化特征.地理学报,2014,69(5):690-696.[LA B C R,SUO L J C,BAI M.Changes of the number of frost days in Tibet during 1981-2010.Acta Geographica Sinica,2014,69(5):690-696.]
    [35]马柱国.中国北方地区霜冻日的变化与区域增暖相互关系.地理学报,2003,58(1):31-37.[MA Z G.Variation of frost days and its relationship to regional warming in Northern China.Acta Geographica Sinica,2003,58(1):31-37.]
    [36]李芬,于文金,张建新,等.山西近50 a初霜冻的气候变化特征及其周期分析.大气科学学报,2012,35(6):754-761.[LI F,YU W J,ZHANG J X,et al.Climate change and its periodic analysis of early frost in recent 50 years in Shanxi province.Transactions of Atmospheric Sciences,2012,35(6):754-761.]
    [37]HOPSOH S,COHEN J,DETHLOFF K.Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter.Tellus,2012,64(3):389-400.
    [38]AUGSPURGER C K.Reconstructing patterns of temperature,phenology,and frost damage over 124 years:Spring damage risk is increasing.Ecology,2013,94(1):41-50.