环向缠绕气瓶金属内胆表面裂纹的应力强度因子计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation of Stress Intensity Factor for the Surface Crack in the Metallic Liner of Hoop-wrapped Cylinder
  • 作者:王汉奎 ; 徐彤 ; 翟建明 ; 桂乐乐
  • 英文作者:Wang Hankui;Xu Tong;Zhai Jianming;Gui Lele;China Special Equipment Inspection and Research Institute;
  • 关键词:环向缠绕气瓶 ; 应力强度因子 ; 自紧 ; 损伤容限
  • 英文关键词:Hoop-wrapped cylinder;;Stress intensity factor;;Auto-frettage;;Damage tolerance
  • 中文刊名:ZGLA
  • 英文刊名:China Special Equipment Safety
  • 机构:中国特种设备检测研究院;
  • 出版日期:2019-06-30
  • 出版单位:中国特种设备安全
  • 年:2019
  • 期:v.35;No.295
  • 基金:2017YFC0805601,典型移动式承压类特种设备动态风险评估方法研究
  • 语种:中文;
  • 页:ZGLA201906002
  • 页数:7
  • CN:06
  • ISSN:11-5345/TK
  • 分类号:8-13+30
摘要
本文利用弹塑性理论对环向缠绕气瓶自紧及服役工况进行应力分析,推导得出不同工况下,气瓶的复合材料和内胆的应力、应变计算公式,并展开讨论。以金属内胆应力计算公式为基础,借鉴平板椭圆形表面裂纹应力强度因子公式,给出了金属内胆表面椭圆形裂纹应力强度因子的计算方法。通过算例表明,内胆裂纹的应力强度因子除与裂纹几何参量、气瓶内压相关,还与气瓶制造时自紧工艺相关,同一气瓶设计,最小、最大自紧引起的应力强度因子相差36%。
        By using the elastic-plastic theory, the stress and strain formulas of the hoop-wrapped cylinder are deduced for the auto-frettage and service conditions. Base on the results, the formula for calculating the stress intensity factor for the surface crack in the metallic liner is introduced. The calculation results show that the stress intensity factor of the metallic liner is related to the crack geometry, the internal pressure and the self-tightening pressure when the cylinder is manufactured. For the same design, there is a 36% difference of the stress intensity factor caused by the auto-frettage process.
引文
[1]ISO 11439 Gas cylinders,High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles[S].,2000
    [2]G.Fernando,R.F.Dickson,T.Adam etc.Fatigue behaviour of hybrid composites[J],Journal of Materials Science,1988,Vol 23,No.10
    [3]Seung-Moo Han,Beom-Cheol Hwang,HoYoonKim etc,Analysis of the autofrettage effect in improving the fatigue resistance of automotive CNG storage vessels[J].International Journal of precision engineering and manufacturing.2009,Vol 10
    [4]陈亮,碳纤维复合材料缠绕气瓶数值分析[D].大连:大连理工大学,2013
    [5]柴森,CNG环向缠绕气瓶纤维应力比研究[D].大连:大连理工大学,2015
    [6]王小燕,金属内衬复合材料气瓶承载能力研究[D].哈尔滨:哈尔滨工业大学,2007
    [7]王静娴,大容积全缠绕复合材料气瓶设计方法研究[D].太原:太原理工大学出版社,2015
    [8]王晓宏,张搏明,刘长喜,等.纤维缠绕复合材料压力容器渐进损伤分析[J].计算力学学报,2009,26(3):
    [9]张爽,由宏新,高国栋,等.缠绕层表面2mm深椭圆损伤对CNG-II复合气瓶应力的影响[J].压力容器,2014,10
    [10]Jianjun Chen,Hongliang Pan.Stress intensity factor of semi-elliptical surface crack in a cylinder with hoop wrapped composite layer[J].International Journal of Pressure Vessels and Piping,2013 Vol.110.
    [11]GBT 228.1-2010金属材料拉伸试验第1部分室温试验方法[S].
    [12]GBT 1447-2005纤维增强塑料拉伸性能试验方法[S].
    [13]沈观林,胡更开,刘彬.复合材料力学[M].北京:清华大学出版社,2015
    [14]余同希,工程塑性力学[M].北京:高等教育出版社,2009
    [15]Ted L.Anderson,T.L.Anderson.Fracture Mechanics:Fundamentals and Applications[M].Taylor&Francis Group,2005