一次春季黄海西部离岸气流背景下形成岸滨雾的过程分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Analysis of the Formation of Coastal Fog Under Surface Offshore Airflow in the Western Yellow Sea in Spring
  • 作者:黄山 ; 张苏平 ; 衣立
  • 英文作者:HUANG Shan;ZHANG Su-Ping;YI Li;Key Laboratory of Physical Oceanography Ocean-Atmosphere Interaction and Climate Laboratory,Ocean University of China;
  • 关键词:岸滨雾 ; 离岸气流 ; 暖湿空气 ; 混合层厚度 ; 下沉运动
  • 英文关键词:coastal fog;;offshore airflow;;warm and humid air;;mixing layer thickness;;subsidence movement
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学物理海洋教育部重点实验室海洋-大气相互作用与气候重点实验室;
  • 出版日期:2019-04-19
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.295
  • 基金:国家自然科学基金项目(41576108;41605006);; 山东省自然科学基金项目(ZR2016DB26);; 国家自然科学基金委员会-山东省人民政府联合资助海洋科学研究中心项目(U1606402)资助~~
  • 语种:中文;
  • 页:QDHY201906004
  • 页数:10
  • CN:06
  • ISSN:37-1414/P
  • 分类号:23-32
摘要
本文利用地面气象站观测资料、青岛近海浮标站及自动气象站资料、卫星云图等数据,结合数值试验的结果,从观测分析、天气形势与边界层结构等方面,对2008年4月6—7日一次黄海西部离岸气流背景下形成岸滨雾过程的物理机制进行了分析与讨论。分析表明:(1)此次岸滨雾是来自陆地的暖湿空气被输送到冷海面凝结产生的。海雾生成前,偏南暖湿空气输送以及降水天气的条件,使离岸气流具有暖湿气流的性质。(2)在1 000hPa局地低压系统作用下,近地面风向转为离岸的偏北风,同时混合层厚度自陆地向海面降低,混合层内部气流离岸下沉至冷海面边界层内,水汽更容易在海面聚集饱和成雾,导致雾区随着离岸气流向南方海面上发展。数值试验进一步证明了离岸暖湿气流对岸滨雾生成过程的作用。该研究可为近海海雾预报提供重要参考。
        In this paper,the meteorological observation data,Qingdao offshore buoy stations and automatic weather station data,satellite cloud image were conbined with the results of numerical simulation and numerical experiments were used to analysis and discuss the mechanism of the formation of coastal fog under the underground of the offshore airflow in western the Yellow Sea during 6 to 7 April 2008,from the observational analysis,the weather situation and the boundary layer structure,etc.The analysis shows that:(1)The coastal fog was generated by condensation of warm and humid air from the land to the cold sea surface.Before the generation of the sea fog,the condition of the south warm and humid air transport and precipitation weather made the offshore airflow possess the nature of the warm and humid air.(2)Under the action of the ground local low pressure system,the near ground wind turn to the north wind of the offshore.At the same time,the thickness of the mixing layer decreased from the land to the sea,the airflow in the mixing layer fell offshore to the boundary layer of the cold sea,water vapor was more likely to gather in the sea to saturated fogging,it leading to the development of fog along the offshore airflow to the southern sea.Numerical experiments further proved the effect of offshore warm and humid airflow on the coastal fog generation process.This research can provide an important reference for offshore sea fog prediction.
引文
[1]王彬华.海雾[M].北京:海洋出版社,1983:352.Wang B H.Sea Fog[M].Beijing:Maritime Press,1983:352.
    [2]Lewis J M,Koracin D,RebinR,et al.Sea fog off the California coast:Viewed in the transient wether systems[J].J Geophys Res,2003,108(D15):4457-4473.
    [3]Koracin D,DormanC E,Lewis J M,et al.Marine fog:A review[J].Atmos Res,2014,143:142-175.
    [4]张苏平,鲍献文.近十年中国海雾研究进展[J].中国海洋大学学报(自然科学版),2008,38:359-366.Zhang S P,Bao X W.The main advances in sea fog research in China[J].Periodical of Ocean University of China,2008,38:359-366.
    [5]李晓丽,唐跃,王雷.舟山海雾发生问题讨论[J].海洋预报,2011,28(1):60-65.Li X L,Tang Y,Wang L.A discussion on the occurrence of sea fog in Zhoushan[J].Mar Forecasts,2011,28(1):60-65.
    [6]傅刚,张涛,周发琇.一次黄海海雾的三维数值模拟研究[J].青岛海洋大学学报(自然科学版),2002,32(6):859-867.Fu G,Zhang T,Zhou F X.Three-dimensional numerical simulation of real sea fog event over the Yellow Sea[J].Periodical of O-cean University of Qingdao,2002,32(6):859-867.
    [7]Gao S H,LinH,Shen B.A heavy sea fog event over the Yellow Sea fog in March 2005:Analysis and numerical modeling[J].Adv Atmos Sci,2007,24(1):65-81.
    [8]王亚男,李永平.冷空气影响下的黄东海海雾特征分析[J].热带气象学报,2009,25(2):216-221.Wang Y N,Li Y P.Climatological analysis of sea fog with cold air in the East China Sea and Yellow Sea[J].J Trop Meteorol,2009,25(2):216-221.
    [9]Wang Q,Zhang S P,Wang Q,et al.A fog event off the coast of the Hangzhou Bay during Meiyu period in June 2013[J].Aerosol Air Qual Res,2018,18:91-102.
    [10]Leipper D F.Fog on the U.S.west coast:A review[J].Bull A-mer Meteor Soc,1994,75(2):229-240.
    [11]Thiébaux J,Rogers E,Wang W Q,et al.A new high-resolution blended real-time global sea surface temperature analysis[J].Bull Amer Met Soc,2003,84(5):645-656.
    [12]Huang H J,Liu H N,Huang J,et al.Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast[J].Mon Wea Rev,2015,143(5):1907-1923.
    [13]Ellrod G P.Advances in the detection and analysis of fog at night using GOES multi-spectral infrared imagery[J].Wea Forecasting,1995,10(3):606-619.
    [14]Gao S H,Wu W,Zhu L.Detection of nighttime sea fog/stratus over the Yellow Sea using MTSAT-1RIR Data[J].Acta Oceanol Sin,2009,28:23-35.
    [15]Zhang S P,Yi L.A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese Adjacent Seas[J].Pure Appl Geophys,2013,170(11):1931-1944,doi:10.1007/s00024-013-0641-6.
    [16]张纪伟,张苏平,吴晓京,等.基于MODIS的黄海海雾研究---海雾特征量反演[J].中国海洋大学学报(自然科学版),2008,39(增):311-318.Zhang J W,Zhang S P,Wu X J,et al.The research on Yellow Sea Sea fog based on MODIS data:Sea fog properties retrieval and spatial-temporal distribution[J].Periodical of Ocean University of China,2008,39(Sup.):311-318.
    [17]Lin Y L,Farley R D,Orville H D.Bulk parameterization of the snow field in a cloud model[J].J Climate Appl Meteor,1983,22:1065-1092.
    [18]Kain J S,Fritsch J M.Convective parameterization for mesoscale models:Kain-Fritsch,the representation of cumulus convection in numerical models[J].Amer Meteor Soc,1993:246.
    [19]Hong S Y,Noh Y,Dudhia J.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Mon Wea Rev,2006,134:2318-2341.
    [20]Iacono M J,Delamere J S,Mlawer E J,et al.Radiative forcing by long-lived greenhouse gases:Calculation with the AER radiative transfer models[J].J Geophys Res,2008,113,D13103,dio:10.1029/2008JD009944.
    [21]Chen F,Dudhia J.Coupling an advanced land surface-hydrology model with the penn state NCAO MM5 modeling system.PartⅠ:Model Implementation and sensitivity[J].Mon Wea Rev,2001,129(4):569-585.
    [22]李鹏远.黄海海雾的观测和基于WRF模式的数值模拟研究[D].青岛:中国海洋大学,2011.Li P Y.An Observational and Modeling Study of Sea Fogs over the Yellow Sea Based upon WRF Model[D].Qingdao:Ocean U-niversity of China,2011.
    [23]张苏平,刘飞,孔扬.一次春季黄海海雾和东海层云关系的研究[J].海洋与湖沼,2014,45(2):341-352.Zhang S P,Liu F,Kong Y.Analysis on a stratus-sea fog event over the Yellow Sea and East China Sea in spring[J].Oceanol Limnol Sin,2014,45(2):341-352.
    [24]王媛,张苏平,衣立,等.一次层积云发展过程对黑潮延伸体海洋锋强迫的响应研究---数值模拟和试验[J].中国海洋大学学报(自然科学版),2017,47(7):10-20.Wang Y,Zhang S P,Yi L,et al.A study of stratocumulus response to the Kuroshio extension front:Numerical simulation and experiments[J].Periodical of Ocean University of China,2017,47(7):10-20.
    (1)岸滨雾:当海岸周围陆地的暖湿空气随着陆风流到海面上,因海面降温并增湿的作用凝结而成雾,这样的雾层白天随着海风流到陆地上,夜间再次随着陆风回到海面上[1]。
    (1)1.000 0、0.998 5、0.997 0、0.995 0、0.992 5、0.990 0、0.985 0、0.977 5、0.970 0、0.954 0、0.934 0、0.909 0、0.880 0、0.850 6、0.821 2、0.791 8、0.762 5、0.708 4、0.657 3、0.609 0、0.563 4、0.520 4、0.479 8、0.441 5、0.405 5、0.371 6、0.339 7、0.281 5、0.255 1、0.230 3、0.207 1、0.185 4、0.165 1、0.146 1、0.128 4、0.111 8、0.096 5、0.082 2、0.068 9、0.056 6、0.045 2、0.034 6、0.024 9、0.015 9、0.007 6、0.0000