用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Cork-derived Porous Activated Carbon for High Performance Supercapacitors
  • 作者:许伟佳 ; 邱大平 ; 刘诗强 ; 李敏 ; 杨儒
  • 英文作者:XU Wei-Jia;QIU Da-Ping;LIU Shi-Qiang;LI Min;YANG Ru;Beijing Key Laboratory of Electrochemical Process and Technology for Materials, The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology;
  • 关键词:软木 ; 活性炭 ; 互联孔结构 ; 超级电容器
  • 英文关键词:cork;;activated carbon;;interconnected pores;;supercapacitor
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:北京化工大学材料电化学过程与技术北京市重点实验室化工资源有效利用国家重点实验室;
  • 出版日期:2019-06-10 17:03
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.236
  • 基金:国家自然科学基金(51372012,51432003)~~
  • 语种:中文;
  • 页:WGCL201906007
  • 页数:8
  • CN:06
  • ISSN:31-1363/TQ
  • 分类号:55-62
摘要
本研究以空腔细胞组成的栓皮栎为原料, KOH为活化剂制备了具有多孔结构的栓皮栎软木基多孔活性炭。以此方法制得的活性炭呈薄片状外形,最大比表面积达到2312 m2/g,具有特殊的微孔-介孔结构。在呈碱性的KOH三电极体系中, 0.1 A/g电流密度时比电容达296 F/g;两电极体系中, 5 A/g时的比电容达到201 F/g,循环5000次后电容保持率达99.5%。在呈中性的Na2SO4两电极体系中,电流密度0.5 A/g (174 F/g)至50 A/g (140 F/g)时电容保持率达80.5%,倍率性能良好,能量密度高达19.62 Wh/kg。
        The quercus variabilis cork made up of cavity cells is used as raw material.Herein,the cork-derived activated carbon with the various pores was successfully prepared by the facile carbonization of cork followed by chemical activation.The as-prepared activated carbon sheets possess large specific surface area(2312 m~2/g)and unique interconnected pores.As a result,it shows excellent electrochemical performance as electrode material for supercapacitors.In three electrode system of KOH,it exhibits a high specific capacitance of 296 F/g at a current density of 0.1 A/g.The assembled symmetric supercapacitor shows a high specific capacitance of 201 F/g at 5 A/g with a good cycling stability of 99.5%capacitance retention after 5000 cycles.In two electrode system of Na_2SO_4,the symmetric supercapacitor displays a good rate performance of 80.5%retention from 0.5 A/g(174 F/g)to 50 A/g(140 F/g)and a high energy density of 19.62 Wh/kg.
引文
[1]DE WIT M,FAAIJ A.European biomass resource potential and costs.Biomass and Bioenergy,2010,34(2):188-202.
    [2]HAO Y X,QIAN M,XU J J,et al.Synthesis,microstructure and superconductivity of cotton-based porous carbon materials.Journal of Inorganic Materials,2018,33(1):93-99.
    [3]SEVILLA M,MOKAYA R.Energy storage applications of activated carbons:supercapacitors and hydrogen storage.Energy&Environmental Science,2014,7(4):1250-1280.
    [4]WICKRAMARATNE N P,XU J,WANG M,et al.Nitrogen enriched porous carbon spheres:attractive materials for supercapacitor electrodes and CO2 adsorption.Chemistry of Materials,2014,26(9):2820-2828.
    [5]ZHAI Y,DOU Y,ZHAO D,et al.Carbon materials for chemical capacitive energy storage.Advanced Materials,2011,23(42):4828-4850.
    [6]ZHANG L L,ZHAO X S.Carbon-based materials as supercapacitor electrodes.Chemical Society Reviews,2009,38(9):2520-2531.
    [7]TIAN X,MA H,LI Z,et al.Flute type micropores activated carbon from cotton stalk for high performance supercapacitors.Journal of Power Sources,2017,359:88-96.
    [8]YU K,ZHU H,QI H,et al.High surface area carbon materials derived from corn stalk core as electrode for supercapacitor.Diamond and Related Materials,2018,88:18-22.
    [9]YANG C S,JANG Y S,JEONG H K.Bamboo-based activated carbon for supercapacitor applications.Curr.Appl.Phys.,2014,14(12):1616-1620.
    [10]CHEN C,ZHANG Y,LI Y,et al.All-wood,low tortuosity,aqueous,biodegradable supercapacitors with ultra-high capacitance.Energy&Environmental Science,2017,10(2):538-545.
    [11]YANG R,WANG Y,LI M,et al.A new carbon/ferrous sulfide/iron composite prepared by an in situ carbonization reduction method from hemp(Cannabis sativa L.)stems and its Cr(VI)removal ability.ACS Sustainable Chemistry&Engineering,2014,2(5):1270-1279.
    [12]YU Z F,WANG X Z,HOU Y N,et al.Preparation of nitrogendoped porous carbon by molten salt method and its catalytic desulfurization performance.Journal of Inorganic Materials,2017,32(7):770-776.
    [13]ATANES E,NIETO-MáRQUEZ A,CAMBRA A,et al.Adsorption of SO2 onto waste cork powder-derived activated carbons.Chemical Engineering Journal,2012,211(22):60-67.
    [14]JAIN A,BALASUBRAMANIAN R,SRINIVASAN M P.Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications.Chemical Engineering Journal,2015,273:622-629.
    [15]KIM M J,JUNG M J,KIM M I,et al.Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons.Applied Chemistry for Engineering,2015,26(5):587-592.
    [16]ROSAS J M,RUIZ-ROSAS R,RODRíGUEZ-MIRASOL J,et al.Kinetic study of SO2,removal over lignin-based activated carbon.Chemical Engineering Journal,2017,307:707-721.
    [17]LULAI E C,CORSINI D L.Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber(Solanum tuberosum L.)wound-healing.Physiological and Molecular Plant Pathology,1998,53(4):209-222.
    [18]PILAO R,RAMALHO E,PINHO C.Overall characterization of cork dust explosion.Journal of Hazardous Materials,2006,133(1):183-195.
    [19]YANG H P,YAN R,CHEN H P,et al.Characteristics of hemicellulose,cellulose and lignin pyrolysis.Fuel,2007,86(12):1781-1788.
    [20]CORDEIRO N,BELGACEM N M,GANDINI A,et al.Cork suberin as a new source of chemicals:2.Crystallinity,thermal and rheological properties.Bioresource Technology,1998,63(2):153-158.
    [21]JIANG G,NOWAKOWSKI D J,BRIDGWATER A V.A systematic study of the kinetics of lignin pyrolysis.Thermochimica Acta,2010,498(1):61-66.
    [22]JOHN M J,THOMAS S.Biofibres and biocomposites.Carbohydrate Polymers,2008,71(3):343-364.
    [23]RAYMUNDO-PI?ERO E,LEROUX F,BéGUIN F.A highperformance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer.Advanced Materials,2006,18(14):1877-1882.
    [24]LI Y,ZHAO Y,CHENG H,et al.Nitrogen-doped graphene quantum dots with oxygen-rich functional groups.Journal of the American Chemical Society,2011,134(1):15-18.
    [25]BINIAK S,SZYMA?SKI G,SIEDLEWSKI J,et al.The characterization of activated carbons with oxygen and nitrogen surface groups.Carbon,1997,35(12):1799-1810.
    [26]ZHAO Y F,RAN W,HE J,et al.Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance.ACS Applied Materials&Interfaces,2015,7(2):1132-1139.
    [27]ZHU H,WANG X L,YANG F,et al.Promising carbons for supercapacitors derived from fungi.Advanced Materials,2011,23(24):2745-2748.
    [28]JIANG L,SHENG L,LONG C,et al.Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors.Advanced Energy Materials,2015,5(15):1500771-1-9.
    [29]XU B,HOU S,CAO G,et al.Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors.Journal of Materials Chemistry,2012,22(36):19088-19093.
    [30]ZHONG C,DENG Y D,HU W B,et al.A review of electrolyte materials and compositions for electrochemical supercapacitors.Chemical Society Reviews,2015,44(21):7484-7539.
    [31]YU A,CHABOT V,ZHANG J.Electrochemical supercapacitors for energy storage and delivery:fundamentals and applications.CRC Press,2013.
    [32]WANG Q,YAN J,WANG Y B,et al.Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors.Carbon,2014,67(2):119-127.
    [33]SUN G L,LI B,RAN J B,et al.Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxidechitosan hydrogels for high performance supercapacitors.Electrochimica Acta,2015,171:13-22.
    [34]LONG C L,CHEN X,JIANG L L,et al.Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors.Nano Energy,2015,12:141-151.
    [35]YAN,J,WANG,Q,WEI T,FAN Z J.Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities.Adv.Energy Mater.,2014,4(4):1300816-1-43.