超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-Temperature Corrosion Behavior of Three Heat-Resistant Steels under Supercritical Carbon Dioxide Condition
  • 作者:梁志远 ; 桂雍 ; 赵钦新
  • 英文作者:LIANG Zhiyuan;GUI Yong;ZHAO Qinxin;MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University;
  • 关键词:超临界二氧化碳 ; 耐热钢 ; 腐蚀行为
  • 英文关键词:supercritical carbon dioxide;;heat-resistant steel;;corrosion behavior
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:西安交通大学热流科学与工程教育部重点实验室;
  • 出版日期:2019-04-11 14:52
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(51808166);; 博士后创新人才支持计划资助项目(BX20190269);; 中央高校基本科研业务费专项资金资助项目(Z201806052)
  • 语种:中文;
  • 页:XAJT201907005
  • 页数:7
  • CN:07
  • ISSN:61-1069/T
  • 分类号:29-35
摘要
针对超临界电站锅炉蒸汽侧氧化皮剥落严重,主要研究了新型超临界二氧化碳动力系统高温部件材料腐蚀问题。选取典型耐热钢T91、TP347HFG和Sanicro 25为实验材料,在超临界二氧化碳腐蚀实验系统上进行650℃、15 MPa工况条件下500 h的腐蚀实验。腐蚀实验结束后,通过分析天平测得耐热钢腐蚀前后的质量变化;利用拉曼光谱仪、X射线衍射仪和辉光放电光谱仪对耐热钢表面腐蚀产物进行物相和成分表征以获得耐热钢的腐蚀行为。腐蚀质量增量结果表明,3种耐热钢的腐蚀动力学符合抛物线腐蚀规律,且T91腐蚀质量增量高于其他两种奥氏体耐热钢。微观表征结果显示,耐热钢T91表面腐蚀产物从二氧化碳/氧化物界面到基体依次为Fe_3O_4、(Fe,Cr)_3O_4和弥散于基体的碳化物,而奥氏体耐热钢腐蚀产物从气固界面到基体主要为Cr的氧化物、Mn和Si的氧化物和碳化物。耐热钢腐蚀产物表面观察到了碳的沉积现象。基于耐热钢表面的腐蚀产物,提出了利用腐蚀退化深度表征耐热钢的抗腐蚀性能。3种耐热钢的腐蚀退化深度从大到小依次为Sanicro 25、TP347HFG和T91。
        Considering the severe oxide skin exfoliation in supercritical boilers, this paper conducted the research on the corrosion behavior of heat-resistant steel in supercritical carbon oxygen system. The high-temperature corrosion behaviors of heat-resistant steels T91, TP347 HFG and Sanicro 25 at 650 ℃ and 15 MPa for 500 h in supercritical carbon dioxide environment were studied. To acquire the corrosion behavior data of investigated heat-resistant steel, the Raman analysis, X-ray diffraction and glow-discharge optical emission spectrometry were employed to characterize the corrosion products. The mass change of the heat-resistant steels was obtained by the analytical balance result. Weight gain results showed that the corrosion kinetics of the investigated heat-resistant steels obey a parabolic corrosion law. The corrosion products formed on T91 are mainly composed of Fe_3O_4,(Fe,Cr)_3O_4 and carbides mixed in the substrate from the gas/oxide interface to the substrate. Corrosion products formed on austenite heat-resistant steel were mainly Cr_2O_3, Mn and Si oxides and carbides in the substrate. Moreover, some carbon was detected on the surface of corrosion products. Based on the above corrosion products, the corrosion degradation depth was used to evaluate the corrosion resistance of steels in high-temperature supercritical carbon dioxide. The corrosion degradation depths of the three steels were in the following order:Sanicro 25>TP347 HFG>T91.
引文
[1] ANGELINO G.Carbon dioxide condensation cycles for power production [J].Journal of Engineering for Gas Turbines and Power,1968,90(3):287-295.
    [2] YANTOVSKII E I,WALL G,LINDQUIST L,et al.Exergonomics of the OCDOPUS project [J].Energy Conversion and Management,1993,34(9/10/11):1213-1218.
    [3] MATHIEU P,NIHART R.Zero-emission MATIANT cycle [J].Journal of Engineering for Gas Turbines and Power,1999,121(1):116-121.
    [4] CHACARTEGUI R,ESCALONA J,SáNCHEZ D,et al.Alternative cycles based on carbon dioxide for central receiver solar power plants [J].Applied Thermal Engineering,2011,31(5):872-879.
    [5] CHA J E,LEE T H,EOH J H,et al.Development of a supercritical CO2 Brayton energy conversion system coupled with a sodium cooled fast reactor [J].Nuclear Engineering and Technology,2009,41(8):1025-1044.
    [6] BRESE R G,KEISER J R,PINT B A.Effect of thermal cycling on compatibility in CO2 for concentrated solar power applications [J].Oxidation of Metals,2017,87(5/6):631-642.
    [7] 段承杰,杨小勇,王捷.S-CO2布雷顿循环的参数优化 [J].原子能科学技术,2011,45(12):1489-1494.DUAN Chengjie,YANG Xiaoyong,WANG Jie.Parameters optimization of supercritical carbon dioxide Brayton cycle [J].Atomic Energy Science and Technology,2011,45(12):1489-1494.
    [8] 梁墩煌,张尧立,郭奇勋,等.核反应堆系统中以超临界二氧化碳为工质的热力循环过程的建模与分析 [J].厦门大学学报(自然科学版),2015,54(4):608-613.LIANG Dunhuang,ZHANG Yaoli,GUO Qixun,et al.Modeling and analysis of nuclear reactor system using supercritical-CO2 Brayton cycle [J].Journal of Xiamen University (Natural Science),2015,54(5):608-613.
    [9] 颜见秋,李富,周旭华,等,气冷快堆燃料组件均匀化初步研究 [J].原子能科学与技术,2009,43(7):626-629.YAN Jianqiu,LI Fu,ZHOU Xuhua,et al.Homogenization of fuel assembly of gas-cooled fast reactor [J].Atomic Energy Science and Technology,2009,43(7):626-629.
    [10] 张一帆,王生鹏,刘文娟,等.超临界二氧化碳再压缩再热火力发电系统关键参数的研究 [J].动力工程学报,2016,36(10):827-833.ZHANG Yifan,WANG Shengpeng,LIU Wenjuan,et al.Study on key parameters of a supercritical fossil-fired power system with CO2 recompression and reheat cycles [J].Journal of Chinese Society of Power Engineering,2016,36(10):827-833.
    [11] LEE H J,KIM H Y,JANG C H.Corrosion behaviors of structural materials in high temperature S-CO2 environments [J].Corrosion Science and Technology,2014,13(2):41-47.
    [12] FIROUZDOR V,SRIDHARAN K,CAO G,et al.Corrosion of a stainless steel and nickel-based alloys in supercritical carbon dioxide environment [J].Corrosion Science,2013,69:281-291.
    [13] FURUKAWA T,ROUILLARD F.Oxidation and carburizing of FBR structural materials in carbon dioxide [J].Progress in Nuclear Energy,2015,82:136-141.
    [14] BRESE R G,KEISER J R,PINT B A.Effect of thermal cycling on compatibility in CO2 for concentrated solar power applications [J].Oxidation of Metals,2017,87(5/6):631-642.
    [15] PINT B A,BRESE R G,KEISER J R.Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 ℃ [J].Materials and Corrosion,2017,68(2):151-158.
    [16] SARRADE S,FéRON D,ROUILLARD F,et al.Overview on corrosion in supercritical fluids [J].The Journal of Supercritical Fluids,2017,120:335-344.
    [17] FIROUZDOR V,CAO G P,SRIDHARAN K,et al.Corrosion resistance of PM2000 ODS steel in high temperature supercritical carbon dioxide [J].Materials and Corrosion,2015,66(2):137-142.
    [18] HOLCOMB G R,CARNEY C,DO.Oxidation of alloys for energy applications in supercritical CO2 and H2O [J].Corrosion Science,2016,109:22-35.
    [19] FIROUZDOR V,SRIDHARAN K,CAO G,et al.Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment [J].Corrosion Science,2013,69:281-291.
    [20] HE L,ROMAN P,LENG B,et al.Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide [J].Corrosion Science,2014,82(2):67-76.
    [21] NGUYEN T D,ZHANG J,YOUNG D J.Effects of silicon and water vapour on corrosion of Fe-20Cr and Fe-20Cr-20Ni alloys in CO2 at 650 ℃ [J].Oxidation of Metals,2017,87(3/4):541-573.
    [22] NGUYEN T D,ZHANG J,YOUNG D J.Effect of Mn on oxide formation by Fe-Cr and Fe-Cr-Ni alloys in dry and wet CO2 gases at 650 ℃ [J].Corrosion Science,2016,112:110-127.
    [23] VISWANATHAN R,SARVER J,TANZOSH J M.Boiler materials for ultra-supercritical coal power plants:steamside oxidation [J].Journal of Materials Engineering and Performance,2006,15(3):255-274.
    [24] ASTEMAN H,SVENNSSON J E,JOHANSSON L G,et al.Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor [J].Oxidation of Metals,1999,52:95-111.
    [25] NEWCOMB S B,STOBBS W M.The initiation of breakaway oxidation of Fe-9Cr-1Mo in a high pressure CO2 atmosphere [J].Oxidation of Metals,1986,26(5/6):431-466.