以二氧化碳规模化利用技术为核心的碳减排方案
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon Dioxide Sizable Utilization Technology Based Carbon Reduction Solutions
  • 作者:陈倩倩 ; 顾宇 ; 唐志永 ; 孙予罕
  • 英文作者:CHEN Qianqian;GU Yu;TANG Zhiyong;SUN Yuhan;CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute,Chinese Academy of Sciences;ShanghaiTech University;
  • 关键词:二氧化碳利用 ; 化石能源 ; 零碳能源 ; 碳减排
  • 英文关键词:carbon dioxide utilization;;fossil fuel;;zero-carbon energy;;carbon emission reduction
  • 中文刊名:KYYX
  • 英文刊名:Bulletin of Chinese Academy of Sciences
  • 机构:中国科学院上海高等研究院中国科学院低碳转化科学与工程重点实验室;上海科技大学;
  • 出版日期:2019-04-20
  • 出版单位:中国科学院院刊
  • 年:2019
  • 期:v.34
  • 基金:中国科学院战略性先导科技专项(XDA21090204)
  • 语种:中文;
  • 页:KYYX201904015
  • 页数:10
  • CN:04
  • ISSN:11-1806/N
  • 分类号:104-113
摘要
碳资源是人类社会发展进入工业时代的基石。人类大量使用含碳资源产生的二氧化碳(CO_2)不应给人类社会带来威胁,更不应是碳资源利用的终结者,而是人类实现可持续发展必须善加利用的资源。文章在国内CO_2利用技术研发取得了可喜进展的基础上,提出了几种未来可能适合于中国的以CO_2规模化利用技术为核心的碳减排方案,包括化石能源耦合CO_2的转化利用技术、零碳能源耦合CO_2的转化利用技术以及温和条件下CO_2直接转化利用技术等。基于我国能源消费结构、短中期化石能源的主导地位以及可再生能源日新月异的发展,化石能源的易获取性和低成本使得其耦合CO_2的转化利用技术方案近年来飞速发展,并可能将在近期带来巨大碳减排潜力和经济效益;零碳能源发电技术的突飞猛进有利于核能/可再生能源发电耦合CO_2生产燃料化学品技术的发展,成为中期最具竞争力的CO_2大规模利用技术;远期来说太阳能驱动的CO_2温和转化可以实现真正意义上的生态碳循环,是远期最有前景的CO_2还原技术。
        Carbon is the cornerstone of the industrial era of human society. The carbon dioxide(CO_2) produced by human beings using carbon-containing resources should not be a threat to human society or the terminator of carbon resource utilization, but a resource that could be made full use of to achieve sustainable development. Based on the rapid development of CO_2 utilization technology in China, this study proposes several CO_2 reduction schemes that may be suitable for China in the future, with large-scale CO_2 utilization as the core, including the CO_2 conversion and utilization technology coupled with fossil energy or zero-carbon energy, and the direct conversion and utilization technology of CO_2 under mild conditions. Fossil energy coupled with CO_2 conversion and utilization technology, which has experienced rapid growth in recent years due to the easy access and low cost of fossil energy, will bring huge carbon emission reduction potential and economic benefits in the near future. Meanwhile, nuclear/renewable energy assisted CO_2 to fuel and chemicals technology, boosted by the advancement of zero-carbon power generation technologies, promises to be one of the most competitive controllable CO_2 reduction technologies in the medium term. Solar-driven CO_2 conversion technology, which can realize the ecological carbon cycle, is expected to be the most promising CO_2 reduction technology in the long run.
引文
1江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(3):345-359.
    2国家统计局.2018年国民经济和社会发展统计公报.北京:国家统计局,2019.
    3 Le QuéréC,Andrew R,Friedlingstein P,et al.Global Carbon Budget 2018.Earth System Science Data,2018,10:2141-2194.
    4 Falkowski P,Scholes R J,Boyle E,et al.Global carbon cycle:A test of our knowledge of the earth.Science,2000,290(5490):2937-2940.
    5 Davis S J,Ken C H,Damon M.Future CO2 emissions and climate change from existing energy infrastructure.Science,2010,329(5997):1330-1333.
    6 Lu J,Zhu C,Pan C,et al.Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser.Science Advances,2018,4(3):1-8.
    7佚名.甲烷二氧化碳制合成气万方级装置实现稳定运行.能源化工,2017,38(4):6.
    8国家能源局.能源发展“十三五”规划.北京:国家能源局,2017.
    9中国能源研究会.中国能源展望2030.北京:经济管理出版社,2016.
    10 Olah G A,Prakash G K,SAlain G.Anthropogenic chemical carbon cycle for a sustainable future.Journal of the American Chemical Society,2011,133(33):12881-12898.
    11 Wei J,Ge Q,Yao R,et al.Directly converting CO2 into a gasoline fuel.Nature Communications,2017,8:1-8.
    12 Jiao F,Li J,Pan X,et al.Selective conversion of syngas to light olefins.Science,2016,351(6277):1065-1068.
    13 Cheng K,Gu B,Liu X,et al.Direct and highly selective conversion of synthesis gas to lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling.Angewandte Chemie International Edition,2016,55(15):4725-4733.
    14 Wang Y,Zhou W,Kang J,et al.Direct conversion of syngas into methyl acetate,ethanol and ethylene by relay catalysis via dimethyl ether intermediate.Angewandte Chemie International Edition,2018,57(37):12012-12016.
    15 Wang L,Zhang W,Zheng X,et al.Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2hydrogenation.Nature Energy,2017,2(11):869-876.
    16 Li Z,Qu Y,Wang J,et al.Highly selective conversion of carbon dioxide to aromatics over Tandem catalysts.Joule,2019,3(2):570-583.
    17 Gao P,Li S,Bu X,et al.Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst.Nature Chemistry,2017,9:1019.
    18国家能源局.电力发展“十三五”规划(2016-2020年).北京:国家能源局,2017.
    19 Bai X,Chen W,Zhao C,et al.Exclusive formation of formic acid from CO2 electroreduction by tunable Pd-Snalloy.Angewandte Chemie International Edition,2017,55(15):12219-12223.
    20 Song Y,Chen W,Zhao C,et al.Metal-free Nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol.Angewandte Chemie International Editon,2017,129(36):10840-10844.
    21 Ma W,Wang H,Yu W,et al.Achieving simultaneous CO2 and H2S conversion via a coupled solar-driven electrochemical approach on non-precious catalysts.Angewandte Chemie International Edition,2018,57(13):3473-3477.
    22 Zhuang T T,Liang Z Q,Seifitokaldani A,et al.Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols.Nature Catalysis,2018,1(6):421-428.
    23 Buelens L,Galvita V,Poelman H,et al.Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle.Science,2016,354:449-452.
    24 Wang L,Yi Y,Chunfei W,et al.One-step reforming of CO2and CH4 into high-value liquid chemicals and fuels at room temperature by Plasma-driven catalysis.Angewandte Chemie International Edition,2017,56(44):13679-13683.
    25 Luna P,QuinteroB R,Dinh C T,et al.Catalyst electroredeposition controls morphology and oxidation state for selective carbon dioxide reduction.Nature,2018,1:103-110.
    26 Natsui K,Iwakawa H,Ikemiya N,et al.Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes.Angewandte Chemie International Edition,2018,57(10):2639-2643.
    27 AsadiM,Kim K,Liu C,et al.Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid.Science,2016,353(6298):467-470.