涡旋光束轨道角动量检测及其性能改善
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Orbital Angular Momentum Measurement of Vortex Beam and Its Performance Improvement
  • 作者:柯熙政 ; 谢炎辰 ; 张颖
  • 英文作者:Ke Xizheng;Xie Yanchen;Zhang Ying;Faculty of Automation and Information Engineering,Xi'an University of Technology;
  • 关键词:物理光学 ; 涡旋光束 ; 轨道角动量 ; 检测 ; 光束复制 ; 相位校正
  • 英文关键词:physical optics;;vortex beam;;orbital angular momentum;;measurement;;fan-out;;phase correction
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:西安理工大学自动化与信息工程学院;
  • 出版日期:2018-08-23 17:14
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.442
  • 基金:国家自然科学基金(61377080,60977054);; 陕西省重点产业创新项目(2017ZDCXL-GY-06-01)
  • 语种:中文;
  • 页:GXXB201901018
  • 页数:7
  • CN:01
  • ISSN:31-1252/O4
  • 分类号:258-264
摘要
利用光栅检测涡旋光束轨道角动量(OAM)并进行性能改善的方法容易实现且能降低通信系统成本。将涡旋光束照射到周期渐变光栅和环形光栅的合适位置,观察衍射图中光斑的分布规律,并对入射涡旋光束进行检测。实验结果表明,通过判断光斑中暗条纹的数量和朝向便可确定入射涡旋光束的拓扑荷的大小和正负,利用相位校正技术或光束复制技术可以使衍射结果中的条纹更加清晰,使用这两种技术后可将检测到的拓扑荷数提高至30。该研究为OAM复用通信中的解复用和涡旋光的产生提供了依据。
        The orbital angular momentum(OAM) of a vortex beam is measured and its performance is improved by gratings. Compared with other equipment or devices, this measurement method by gratings is simple and can make the cost of communication system reduced. The vortex beam is illuminated to an appropriate position of a periodgradually-changing grating or an annular grating. The light spot distribution in the diffraction pattern is observed and the incident vortex beam is measured. The experimental results show that the size and plus-minus of the topological charge of incident vortex beam can be determined according to the number and orientation of dark stripes in the light spot. Meanwhile, the phase correction or fan-out technique can be adopted to make the stripes more clearly visible in the diffraction results. Moreover, with these two techniques, the measured maximum number topological charges is increased to 30. This research provides a basis for the demultiplexing and generation of vortex beams in the OAM multiplexing communication.
引文
[1] Lai J S, Wu B B, Zhao W Y, et al. Application and analysis of orbital angular momentum technology inoptical communication[J]. Telecommunications Science,2014, 30(5):46-50, 54.赖俊森,吴冰冰,赵文玉,等.光通信中轨道角动量技术及应用前景分析[J].电信科学,2014, 30(5):46-50, 54.
    [2] Yuan X C, Jia P, Lei T, et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4):331-346.袁小聪,贾平,雷霆,等.光学旋涡与轨道角动量光通信[J].深圳大学学报理工版,2014, 31(4):331-346.
    [3] Ke X Z, Xu J Y. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9):0905003.柯熙政,胥俊宇.涡旋光束轨道角动量干涉及检测的研究[J].中国激光,2016, 43(9):0905003.
    [4] Ye F W, Li Y P. Measurement of superposition of orbital angular momentum states of photons by forklike grating[J]. Acta Physica Sinica, 2003, 52(2):328-331.叶芳伟,李永平.用叉形光栅实现光子轨道角动量的叠加态的测量[J].物理学报,2003, 52(2):328-331.
    [5] Fu S Y, Wang T L, Zhang S K, et al. Integrating5X5 Dammann gratings to detect orbital angular momentum states of beams with the range of—24 to+24[J]. Applied Optics, 2016, 55(7):1514-1517.
    [6] Chen R S, Zhang X Q, Zhou Y, et al. Measuring OAM states of vortex beams with a sectorial screen[J]. Proceedings of SPIE, 2016, 9950:99500Q.
    [7] Hu R, Wu F T, Yang Y F. Methods for detecting topological charge number of vortex beams using axicon[J]. Journal of Huaqiao University(Natural Science), 2017, 38(5):706-709.胡润,吴逢铁,杨艳飞.采用轴棱锥检测涡旋光束拓扑电荷数的方法[J].华侨大学学报(自然科学版),2017, 38(5):706-709.
    [8] Schattschneider P, Stoger-Pollach M, Verbeeck J.Novel vortex generator and mode converter for electron beams[J]. Physical Review Letters, 2012,109(8):084801.
    [9] Hickmann J M, Fonseca E J S, Soares W C, et al.Unveiling a truncated optical lattice associated with a triangular aperture using light's orbital angular momentum[J]. Physical Review Letters, 2010, 105(5):053904.
    [10] Emile O, Emile J. Young's double-slit interference pattern from a twisted beam[J]. Applied Physics B,2014, 117(1):487-491.
    [11] Chen J, Ke X Z, Yang Y M. Laguerre-Gaussian beam diffraction and dispersion of the orbital angular momentum[J]. Acta Optica Sinica, 2014, 34(4):0427001.谌娟,柯熙政,杨一明.拉盖尔高斯光的衍射和轨道角动量的弥散[J].光学学报,2014, 34(4):0427001.
    [12] Dai K J, Gao C Q, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings[J]. Optics Letters, 2015,40(4):562-565.
    [13] Fu S Y, Wang T L, Gao Y, et al. Diagnostics of the topological charge of optical vortex by a phasediffractive element[J]. Chinese Optics Letters,2016, 14(8):080501.
    [14] Zheng S, Wang J. Measuringorbital angular momentum(OAM)states of vortex beams with annular gratings[J]. Scientific Reports, 2017, 7:40781.
    [15] Li Y J, Deng J, Li J P, et al. Sensitive orbital angular momentum(OAM)monitoring by using gradually changing-period phase grating in OAMmultiplexing optical communication systems[J].IEEE Photonics Journal, 2016, 8(2):1-6.
    [16] Yao A M, Padgett M J. Orbital angular momentum:origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2):161-204.
    [17] Zhou J, Zhang WH, Chen L X. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter[J]. Applied Physics Letters, 2016, 108(11):111108.
    [18] Berkhout G C G, Lavery M P J, Courtial J, et al.Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15):153601.
    [19] Hossack W J, Darling A M, Dahdouh A.Coordinatetransformations with multiple computergenerated optical elements[J]. Journal of Modern Optics, 1987, 34(9):1235-1250.
    [20] Mirhosseini M, Malik M, Shi Z M, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications,2013, 4:2781.
    [21] Li C, Jiang R, Wang L, et al. Simulations of high efficient separation of orbital-angular-momentum of light[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2016,36(3):47-52.李成,蒋蕊,王乐,等.轨道角动量的髙效精细分离的仿真实现[J].南京邮电大学学报(自然科学版),2016, 36(3):47-52.