食品各向异性结构及其仿生构建方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anisotropic Food Structures and the Related Biomimic Fabrications
  • 作者:赵一果 ; 何君 ; 孙翠霞 ; 鲁伟 ; 方亚鹏
  • 英文作者:Zhao Yiguo;He Jun;Sun Cuixia;Lu Wei;Fang Yapeng;School of Agriculture and Biology,Shanghai Jiao Tong University;
  • 关键词:食品结构 ; 各向异性 ; 仿生食品 ; 构建方法
  • 英文关键词:food structure;;anisotropy;;biomimic foods;;fabrication
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:上海交通大学农业与生物学院;
  • 出版日期:2019-07-10 16:02
  • 出版单位:中国食品学报
  • 年:2019
  • 期:v.19
  • 基金:上海市科委科技创新行动计划重大项目(18JC1410801)
  • 语种:中文;
  • 页:ZGSP201906002
  • 页数:12
  • CN:06
  • ISSN:11-4528/TS
  • 分类号:7-18
摘要
各向异性结构在食品中普遍存在。常见的食品如果蔬、禽肉,基于其原生物体自身组织的有序排列,多含有各向异性结构。传统食品在一般性的加工中,经过揉、捏、挤、压等工艺也会形成一定的各向异性。现有仿生食品的研究中,已涉及基于细胞培养、纺丝、挤压、定向冷冻、剪切等方法构建的各向异性结构。本文重点阐述现有食品中有代表性的各向异性结构,分析比对基于各向异性结构制备仿生食品的主要构建方法,提出仿生构建的发展方向与重点。
        Anisotropic structures are ubiquitously present in foods.Common foods such as vegetables,fruits,poultry and meats,all contain anisotropic structures originating from biological tissues.Processed foods also form anisotropic structures as a results of different processing units such as rubbing,kneading,extrusion and compression.Studies of biomimic foods involve the fabrication of anisotropic structures via different approaches including in vitro cell culture,spinning,extrusion,directional freezing and shear cell technology,etc.This review paper introduces representative anisotropic structures commonly observed in foods,and compares the existing methodologies for fabrication of biomimic foods based on the design of anisotropic structures.It will also outline the perspectives and trends of the future studies on biomimic food fabrication.
引文
[1] BONNY S P, GARDNER G E, PETHICK D W, et al. Artificial meat and the future of the meat industry[J]. Animal Production Science, 2017, 57(11):2216-2223.
    [2] BONNY S P, GARDNER G E, PETHICK D W, et al. What is artificial meat and what does it mean for the future of the meat industry?[J]. Journal of Integrative Agriculture, 2015, 14(2):255-263.
    [3] KRINTIRAS G A, G魻BEL J, BOUWMAN W G, et al. On characterization of anisotropic plant protein structures[J]. Food&Function, 2014, 5(12):3233-3240.
    [4] KUMAR P, CHATLI M, MEHTA N, et al. Meat analogues:Health promising sustainable meat substitutes[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(5):923-932.
    [5]靳智.大豆蛋白在仿生食品应用中的研究进展[J].农产品加工(下), 2015,(2):73-75.
    [6] HOEK A C, LUNING P A, WEIJZEN P, et al.Replacement of meat by meat substitutes. A survey on person-and product-related factors in consumer acceptance[J]. Appetite, 2011, 56(3):662-673.
    [7] HORABIK J, MOLENDA M. Isotropy and anisotropy in agricultural products and foods[M]. Dordrecht:Springer Netherlands, 2011:407-409.
    [8] BOURNE M. Food texture and viscosity:concept and measurement[M]. London:Academic Press,2002:309-315.
    [9] MANSKI J M, VAN DER GOOT A J, BOOM R M. Advances in structure formation of anisotropic protein-rich foods through novel processing concepts[J]. Trends in Food Science&Technology, 2007,18(11):546-557.
    [10] KHAN A, VINCENT J. Anisotropy in the fracture properties of apple flesh as investigated by crackopening tests[J]. Journal of Materials Science, 1993,28(1):45-51.
    [11] TORNBERG E. Effects of heat on meat proteinsImplications on structure and quality of meat products[J]. Meat Science, 2005, 70(3):493-508.
    [12] PENA-GONZALEZ E, ALARCON-ROJO A D,GARCIA-GALICIA I, et al. Ultrasound as a potential process to tenderize beef:Sensory and technological parameters[J]. Ultrason Sonochem, 2019, 53:134-141.
    [13] SEGURA-PONCE L A, SOTO-PARDO V A,GUZM魣N-MEZA M F. Characterization of apples(Granny Smith)dried in industrial equipment and the relationship with drying mechanisms[J]. Food Structure, 2019, 21:100119.
    [14] YANG S W, WATKINSON P, GILLIES G, et al.Microstructural transformations in anisotropy and melt-stretch properties of low moisture part skim mozzarella cheese[J]. International Dairy Journal,2016, 62:19-27.
    [15] BITTIG T, WARTLICK O, KICHEVA A, et al.Dynamics of anisotropic tissue growth[J]. New Journal of Physics, 2008, 10(6):063001.
    [16] P魤DURET S, OROIAN M, GUTT G, et al. Evaluation of strawberry texture in close relation with their anisotropy[J]. International Journal of Food Properties, 2017, 20(2):247-259.
    [17]吕俊龙,杨薇,郭徽.白萝卜常规力学特性试验[J].食品与机械, 2015, 31(4):152-154.
    [18]张锋伟,谢军海,张雪坤,等.鲜枣整果力学特性研究及其有限元分析[J].食品科学, 2016, 37(23):100-104.
    [19] WANG J. Anisotropic relaxation properties of pear[J].Biosystems Engineering, 2003, 85(1):59-65.
    [20] CHAKESPARI A G, RAJABIPOUR A, MOBLI H.Anisotropic relaxation and creep properties of apple(cv. Shafi Abadi and Golab Kohanz)[J]. Adv. J.Food Sci. Technol, 2010, 2(4):200-205.
    [21] XIONG Y L. Myofibrillar protein from different muscle fiber types:implications of biochemical and functional properties in meat processing[J]. Critical Reviews in Food Science&Nutrition, 1994, 34(3):293-320.
    [22] MESCHER A L. Junqueira’s basic histology text and atlas[M]. New York, NY:McGraw-Hill Education, 2018:108.
    [23] LINSEISEN J, KESSE E, SLIMANI N, et al. Meat consumption in the European Prospective Investigation into Cancer and Nutrition(EPIC)cohorts:results from 24-hour dietary recalls[J]. Public Health Nutrition, 2002, 5(6b):1243-1258.
    [24] CHIANG J H, LOVEDAY S M, HARDACRE A K, et al. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues[J]. Food Structure, 2019, 19:100102.
    [25] CLERJON S, DAMEZ J. Microwave sensing for meat and fish structure evaluation[J]. Measurement Science and Technology, 2007, 18(4):1038.
    [26] OBERG C J, MCMANUS W R, MCMAHON D J.Microstructure of Mozzarella cheese during manufacture[J]. Food Structure, 1993, 12(2):12.
    [27] AK M M, GUNASEKARAN S. Anisotropy in tensile properties of Mozzarella cheese[J]. Journal of Food Science, 1997, 62(5):1031-1033.
    [28] GONZALEZ J, MCCARTHY K, MCCARTHY M.Textural and structural changes in lasagna after cooking[J]. Journal of Texture Studies, 2000, 31(1):93-108.
    [29] ASGAR M, FAZILAH A, HUDA N, et al. Nonmeat protein alternatives as meat extenders and meat analogs[J]. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(5):513-529.
    [30]苏更林.素鸡的制作[J].河北农业科技, 1996,(2):68.
    [31] DEKKERS B L, BOOM R M, VAN DER GOOT A J. Structuring processes for meat analogues[J]. Trends in Food Science&Technology, 2018, 81:25-36.
    [32] POST M J. Cultured meat from stem cells:Challenges and prospects[J]. Meat Science, 2012, 92(3):297-301.
    [33] POST M J. Cultured beef:medical technology to produce food[J]. Journal of the Science of Food and Agriculture, 2014, 94(6):1039-1041.
    [34] STEPHENS N, DI SILVIO L, DUNSFORD I, et al.Bringing cultured meat to market:Technical, sociopolitical, and regulatory challenges in cellular agriculture[J]. Trends in Food Science&Technology,2018, 78:155-166.
    [35]庞卫军,孙世铎,渊锡藩,等.体外培养肉-肉类生产发展的方向[J].养猪, 2014,(4):78-80.
    [36] NIEUWLAND M, GEERDINK P, BRIER P, et al.Food-grade electrospinning of proteins[J]. Innovative Food Science&Emerging Technologies, 2013, 20:269-275.
    [37] GALLANT D, BOUCHET B, CULIOLI J. Ultrastructural aspects of spun pea and fababean proteins[J]. Food Structure, 1984, 3(2):10.
    [38] RUPPRECHT A. Preparation of oriented DNA by wet spinning[J]. Acta Chem Scand, 1966, 20(2):494-504.
    [39] ZHANG S, KOZIOL K K, KINLOCH I A, et al.Macroscopic fibers of well‐aligned carbon nanotubes by wet spinning[J]. Small, 2008, 4(8):1217-1222.
    [40] RAMPON V, ROBERT P, NICOLAS N, et al.Protein structure and network orientation in edible films prepared by spinning process[J]. Journal of Food Science, 1999, 64(2):313-316.
    [41] KYRIAKOPOULOU K, DEKKERS B, VAN DER GOOT A J. Plant-based meat analogues[M]. London:Academic Press, 2019:110.
    [42] PIETSCH V L, EMIN M A, SCHUCHMANN H P.Process conditions influencing wheat gluten polymerization during high moisture extrusion of meat analog products[J]. Journal of Food Engineering, 2017,198:28-35.
    [43] SADLER M J. Meat alternatives-market developments and health benefits[J]. Trends in Food Science&Technology, 2004, 15(5):250-260.
    [44] WILD F, CZERNY M, JANSSEN A M, et al. The evolution of a plant-based alternative to meat. From niche markets to widely accepted meat alternatives[J]. Agro Food Industry Hi-Tech, 2014, 25(1):45-49.
    [45]朱嵩,刘丽,张金闯,等.高水分挤压组织化植物蛋白品质调控及评价研究进展[J].食品科学, 2018,39(19):287-293.
    [46] OSEN R, TOELSTEDE S, WILD F, et al. High moisture extrusion cooking of pea protein isolates:Raw material characteristics, extruder responses,and texture properties[J]. Journal of Food Engineering, 2014, 127:67-74.
    [47] CHEN F L, WEI Y M, ZHANG B, et al. System parameters and product properties response of soybean protein extruded at wide moisture range[J].Journal of Food Engineering, 2010, 96(2):208-213.
    [48] EMIN M, SCHUCHMANN H. A mechanistic approach to analyze extrusion processing of biopolymers by numerical, rheological, and optical methods[J].Trends in Food Science&Technology, 2017, 60:88-95.
    [49] PAWELEC K, HUSMANN A, BEST S M, et al. A design protocol for tailoring ice-templated scaffold structure[J]. Journal of the Royal Society Interface,2014, 11(92):20130958.
    [50] CHEN M, ZHU J, QI G, et al. Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method[J]. Materials Letters, 2012, 89:104-107.
    [51] CONSOLACION F I, JELEN P. Freeze texturation of proteins:effect of the Alkali, acid and freezing treatments on texture formation[J]. Food Structure,1986, 5(1):5.
    [52] YANG T C. Freeze‐texturized maine shrimp protein extract[J]. Journal of Food Science, 1987, 52(3):601-609.
    [53] PENG X, HE C, LIU J, et al. Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties[J]. Journal of Materials Science, 2016, 51(12):5901-5911.
    [54] ZHU J, WANG J, LIU Q, et al. Anisotropic tough poly(2-hydroxyethyl methacrylate)hydrogels fabricated by directional freezing redox polymerization[J].Journal of Materials Chemistry B, 2013, 1(7):978-986.
    [55] FUKUSHIMA M, YOSHIZAWA Y I, OHJI T.Macroporous ceramics by gelation-freezing route us ing gelatin[J]. Advanced Engineering Materials,2014, 16(6):607-620.
    [56] ASUNCION M C T, GOH J C, TOH S L.Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67:646-656.
    [57] CHEN F L, WEI Y M, ZHANG B. Chemical cross-linking and molecular aggregation of soybean protein during extrusion cooking at low and high moisture content[J]. LWT-Food Science and Technology, 2011, 44(4):957-962.
    [58] MANSKI J M, VAN DER GOOT A J, BOOM R M. Formation of fibrous materials from dense calci um caseinate dispersions[J]. Biomacromolecules, 2007,8(4):1271-1279.
    [59] MANSKI J M, VAN DER ZALM E E, VAN DER GOOT A J, et al. Influence of process parameters on formation of fibrous materials from dense calcium caseinate dispersions and fat[J]. Food Hydrocolloids,2008, 22(4):587-600.
    [60] GRABOWSKA K J, ZHU S, DEKKERS B L, et al. Shear-induced structuring as a tool to make anisotropic materials using soy protein concentrate[J].Journal of Food Engineering, 2016, 188:77-86.
    [61] DEKKERS B L, EMIN M A, BOOM R M, et al.The phase properties of soy protein and wheat gluten in a blend for fibrous structure formation[J].Food Hydrocolloids, 2018, 79:273-281.
    [62] GRABOWSKA K J, TEKIDOU S, BOOM R M, et al. Shear structuring as a new method to make anisotropic structures from soy-gluten blends[J]. Food Research International, 2014, 64:743-751.
    [63] DEKKERS B L, HAMOEN R, BOOM R M, et al.Understanding fiber formation in a concentrated soy protein isolate-Pectin blend[J]. Journal of Food Engineering, 2018, 222:84-92.
    [64] KRINTIRAS G A, DIAZ J G, VAN DER GOOT A J, et al. On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers[J]. Journal of Food Engineering,2016, 169:205-213.
    [65] KIM H W, BAE H, PARK H J. Classification of the printability of selected food for 3D printing:Development of an assessment method using hydrocolloids as reference material[J]. Journal of Food Engineering, 2017, 215:23-32.
    [66] GODOI F C, PRAKASH S, BHANDARI B R. 3d printing technologies applied for food design:Status and prospects[J]. Journal of Food Engineering,2016, 179:44-54.
    [67] KANARSKA Y, DUOSS E B, LEWICKI J P, et al.Fiber motion in highly confined flows of carbon fiber and non-Newtonian polymer[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 265:41-52.
    [68] LIU Y, LIU D, WEI G, et al. 3D printed milk protein food simulant:Improving the printing performance of milk protein concentration by incorporating whey protein isolate[J]. Innovative Food Science&Emerging Technologies, 2018, 49:116-126.
    [69] DICK A, BHANDARI B, PRAKASH S. 3D printing of meat[J]. Meat Sci, 2019, 153:35-44.
    [70] PALLOTTINO F, HAKOLA L, COSTA C, et al.Printing on food or food printing:a review[J]. Food and Bioprocess Technology, 2016, 9(5):725-733.
    [71] SANO K, ISHIDA Y, AIDA T. Synthesis of anisotropic hydrogels and their applications[J]. Angew Chem Int Ed Engl, 2018, 57(10):2532-2543.