漂浮式光伏电站漂浮方阵流载荷数值计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical research on current load of floating square array in floating PV power station
  • 作者:孔耀华 ; 肖福勤 ; 陈作钢 ; 宋肖锋 ; 吴昊
  • 英文作者:KONG Yao-hua;XIAO Fu-qin;CHEN Zuo-gang;SONG Xiao-feng;WU Hao;State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University;SUNGROW Power Supply Co, Ltd;Huainan Sunshine Floating Technology Co., Ltd;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration(CISSE);
  • 关键词:漂浮式光伏电站 ; 漂浮方阵 ; 流载荷 ; 数值模拟 ; 2.5D计算
  • 英文关键词:floating PV power station;;floating square array;;current load;;numerical simulation;;2.5Dmethod
  • 中文刊名:SDLJ
  • 英文刊名:Chinese Journal of Hydrodynamics
  • 机构:上海交通大学海洋工程国家重点实验室;阳光电源股份有限公司;淮南阳光浮体科技有限公司;高新船舶与深海开发装备协同创新中心(船海协创中心);
  • 出版日期:2019-03-30
  • 出版单位:水动力学研究与进展(A辑)
  • 年:2019
  • 期:v.34
  • 语种:中文;
  • 页:SDLJ201902010
  • 页数:6
  • CN:02
  • ISSN:31-1399/TK
  • 分类号:82-87
摘要
漂浮式光伏电站具有组件多和规模大的特点,对其流载荷的评估尚未有成熟方法。该文首先以风洞试验对缩尺的部分模型方阵风载荷的CFD计算进行精度验证,然后对170 m×170 m三维漂浮方阵在不同来流角度下所受流载荷进行了计算和分析,获得了流载荷的分布规律。结合典型工况下流载荷CFD的3D计算结果,验证了该文提出的2.5D方法模拟3D计算的合理性。大型漂浮方阵的流载荷研究可先计算2.5D流载荷,再通过3D计算得到的载荷分布规律推算出整个方阵的流载荷。在0.5 m/s流速以上,无量纲的流载荷系数与流速基本无关。
        The floating PV power station has the characteristics of large number of components and massive scale, and the evaluation of its current load has not been matured. In this study, the accuracy of CFD calculation of the wind load of the reduced scale array is verified by wind tunnel test. The current loads of 170 m × 170 m three-dimensional floating array are calculated and analyzed at different flow directions, and the distribution law of the current load is obtained. The rationality of the 2.5 D method proposed in this paper to simulate the 3 D calculation of CFD under typical working conditions is verified. The study on current load of large floating square array can first calculate the 2.5 d flow load, the current load distributions of the entire square array can be further deduced by the 3 D load distribution law.The dimensionless coefficient of current load can be considered independent of the velocity above 0.5 m/s.
引文
[1]闫云飞,张智恩,张力,等.太阳能利用技术及其应用[J].太阳能学报,2012,33(S1):47-56.YAN Yun-fei,ZHANG Zhi-en,ZHANG Li,et al.Application and utilization technology of solar energy[J].Acta Energiae Solaris Sinica,2012,33(S1):47-56.
    [2]于雪梅.谈太阳能光伏发电系统的原理与应用[J].工程建设与设计,2013,(08):102-105.YU Xue-mei.Principle and application of solar photovoltaic power generation system[J].Construction&Design for Engineering,2013,(08):102-105.
    [3]国家发展改革委,国家能源局.能源发展“十三五”规划[EB/OL].National Development and Reform Commission,National Energy Administration.The 13th Five-Year Plan for Energy Development[EB/OL].http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170117_835278.html
    [4]张玮.两淮采煤塌陷区土地复垦模式及其工程技术研究[D].安徽农业大学,合肥,中国,2008.ZHANG Wei.The coal mines collapse area land reclamation pattern and the project technical standard research of HuaiNan and HuaiBei cities[D].Anhui Agricultural University,Hefei,China,2008.
    [5]王方毓.水上太阳能光伏电站的技术特点及应用[J].工程技术研究,2017(10):76-77.WANG Fang-yu.Technical characteristics and application of water solar photovoltaic power station[J].Engineering Technology and Application,2017(10):76-77.
    [6]杨静静.两淮采煤沉陷区水面光伏发电规划[D].华北电力大学,北京,中国,2017.YANG Jing-jing.Study of water surface photovoltaic plant in coalmining subsidence areas of Huainan and Huaibei region[D].North China Electric Power University,Beijing,China,2017.
    [7]SHADEMAN M,HANGAN H.Wind loading on solar panels at different inclination angles[C]Conference of American Society of Wind Engineers.Puerto Rico,2009.
    [8]黄张裕,阎虹旭.太阳能光伏板风荷载体型系数群体遮挡效应数值模拟研究[J].特种结构,2015(3):18-22.HUANG Zhang-yu,YAN Hong-xu.Numerical simulation study on the group shielding effect of wind power load coefficient of solar photovoltaic panels[J].Special Structures,2015(3):18-22.
    [9]王建勃,朱锐,何惧.光伏电站阵列风荷载衰减特性数值模拟[J].太阳能,2013(15):20-22.WANG Jian-bo,ZHU Rui,HE Ju.Numerical simulation of wind load attenuation characteristics of PV array[J].Solar Energy,2013(15):20-22.
    [10]BITSUAMLAK G,DAGNEW A,ERWIN J.Evaluation of wind loads on solar panel modules using CFD[C].Proceedings of the 5th International Symposium on Computational Wind Engineering(CWE2010),Chapel Hill,North Carolina,USA,2010.
    [11]ANDERSON J D,WENDT J.Computational fluid dynamics[M].New York:McGraw-Hill,1995.
    [12]SHIH T H,LIOU W W.SHABBIR A,et al.A new k-εEddy-Viscosity model for high reynolds number turbulent flows-model development and validation[J].Computers Fluids,1995.24(3):227-238.
    [13]陈前昆,尹奇志,范爱龙,等.基于CFD的某内河游船风载荷系数计算[J].船海工程,2015,44(06):18-22.CHEN Qian-kun,YIN Qi-zhi,FAN Ai-long,et al.Research on wind load coefficients of an inland cruise ship based on CFD[J].Ship&Ocean Engi-neering,2015,44(06):18-22.
    [14]PATANKAR S.Numerical heat transfer and fluid flow[M].CRC press,1980.
    [15]LEONARD B P,MOKHTARI S.ULTRA-SHARPnonoscillatory convection schemes for high-speed steady multidimensional flow[R].NASA-TM1-2568(ICOMP-90-12).NASA Lewis Research Center.1990.
    [16]陈作钢,李金成,代燚,等.多功能风洞及CFD优化设计[J].实验流体力学,2012,26(4):71-76.CHEN Zuo-gang,LI Jin-cheng,DAI Yi,et al.Versatile wind tunnel and CFD-based optimal design[J].Journal of Experiments in Fluid Mechanics,2012,26(4):71-76.