脂筏在柯萨奇病毒A组16型感染RD细胞中的作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The role of lipid rafts in CA16 infecting RD cells
  • 作者:李兴志 ; 李鹏飞 ; 刘昕旸 ; 程丽鑫 ; 郑亮 ; 张雅婷 ; 沈玉江 ; 武雪宁 ; 徐嘉欣 ; 王显赫 ; 张华 ; 曹宏伟
  • 英文作者:LI Xing-zhi;LI Peng-fei;LIU Xin-yang;CHENG Li-xin;ZHENG Liang;ZHANG Ya-ting;SHEN Yu-jiang;WU Xue-ning;XU Jia-xin;WANG Xian-he;ZHANG Hua;CAO Hong-wei;College of Life Science and Technology, Heilongjiang Bayi Agricultural University;Nephrology, The Fifth Hospital Affiliated with Harbin Medical University;
  • 关键词:柯萨奇病毒A组16型 ; 脂筏 ; 胆固醇
  • 英文关键词:Coxsackievirus A 16;;lipid rafts;;cholesterol
  • 中文刊名:ZISC
  • 英文刊名:Journal of Pathogen Biology
  • 机构:黑龙江八一农垦大学生命科学技术学院;哈尔滨医科大学附属第五医院肾内科;
  • 出版日期:2019-06-30
  • 出版单位:中国病原生物学杂志
  • 年:2019
  • 期:v.14;No.150
  • 基金:国家自然科学基金面上项目(No.31570159);; 黑龙江省政府博士后科研启动基金项目(No.LBH-Q17135);; 黑龙江八一农垦大学青年创新人才项目(No.CXRC2016-12);黑龙江八一农垦大学博士科研启动基金项目(No.XDB2015-16);; 大庆市指导性科技计划项目(zdy-2017-36)
  • 语种:中文;
  • 页:ZISC201906010
  • 页数:6
  • CN:06
  • ISSN:11-5457/R
  • 分类号:51-56
摘要
目的探究脂筏在柯萨奇病毒A组16型(CA16)感染RD细胞中的作用。方法使用胆固醇抑制剂甲基-β-环糊精(MβCD)驱散细胞膜胆固醇并破坏脂筏,分别采用RT-PCR和Western blot技术,在mRNA以及蛋白质水平检测MβCD处理对于CA16病毒感染RD细胞的影响。在RD细胞感染不同时间使用MβCD处理,并检测其对CA16病毒感染的影响。MβCD处理后,使用添加外源胆固醇的方式对细胞膜胆固醇进行补充,观察CA16病毒感染的变化。通过Western blot检测CA16感染后宿主细胞Akt磷酸化水平的变化,以及MβCD处理对宿主细胞Akt磷酸化的影响。结果 MβCD以剂量依赖方式抑制CA16病毒对RD细胞的感染,MβCD处理浓度为2.5、5、7.5、10 mmol/L时CA16 VP1的mRNA水平和蛋白质水平表达均出现降低,差异均具有统计学意义(P<0.05)。在感染前1 h使用MβCD处理CA16 VP1 mRNA和蛋白质水平的表达分别降低了(84.23±3.70)%和(81.80±5.09)%,与未做处理的对照组相比具有统计学意义(P<0.05)。在MβCD处理后添加200、300、400μg/ml的外源胆固醇,VP1 mRNA水平的表达恢复了(26.63±7.69)%、(77.06±6.91)%、(91.36±12.09)%,VP1蛋白质水平的表达恢复了(28.71±8.27)%、(51.14±5.82)%、(58.14±7.35)%,且VP1表达与MβCD单独处理相比差异均具有统计学意义(P<0.05)。CA16感染30 min时pAkt表达上升了(91.86±27.14)%,差异具有统计学意义(P<0.05)。CA16感染MβCD预处理过的细胞pAkt未发生显著变化(P>0.05)。结论脂筏在CA16病毒感染RD细胞与激活PI3K/Akt通路中起重要作用。
        Objective To investigate the role of lipid rafts in CA16 infecting RD cells. Methods MβCD, an inhibitor of cholesterol, was used to remove cytomembrane cholesterol and destroy lipid rafts. The effects of MβCD treatment on CA16 infection were determined using RT-PCR and Western blotting to measure levels of mRNA and protein. Cells were treated with MβCD at different times during infection, and its effect on CA16 infection was observed. Cholesterol was supplemented after MβCD treatment, and then the effect of cholesterol supplementation on CA16 infection was determined. The level of phosphorylation of Akt in host cells after CA16 infection and the effect of MβCD treatment on the phosphorylated Akt were determined using Western blotting. Results MβCD inhibited CA16 from infecting RD cells in a dose-dependent manner. The levels of CA16 VP1 mRNA and protein decreased after treatment with 2.5, 5,7.5, or 10 mmol/L of MβCD. Differences in those levels were significant(P<0.05). The levels of CA16 VP1 mRNA and protein decreased significantly(84.23±3.70% and 81.80±5.09%) with MβCD treatment 1 h prior to CA16 infection compared to levels in untreated cells(P<0.05). The level of mRNA increased 26.63±7.69% with 200 μg of cholesterol supplementation after MβCD treatment, 77.06±6.91% with 300 μg of cholesterol supplementation, and 91.36±12.09% with 400 μg of cholesterol supplementation. The level of protein increased 28.17±8.27% with 200 μg of cholesterol supplementation, 51.14±5.82% with 300 μg of cholesterol supplementation, and 58.14±7.35% with 400 μg of cholesterol supplementation. The increase in the levels of VP1 mRNA and protein was significant compared to levels in cells treated with MβCD(P<0.05). The expression of phosphorylated Akt increased significantly(91.86±27.14%) 30 min after infection(P<0.05). The level of phosphorylated Akt did not change significantly after MβCD treatment(P>0.05). Conclusion Lipid rafts play an important role in CA16 infection of RD cells and the activation of the PI3 K/Akt pathway.
引文
[1] Xing W,Liao Q,Viboud C,et al.Hand,foot,and mouth disease in China,2008-2012:an epidemiological study[J].Lancet Infect Dis,2014,14(4):308-18.
    [2] Legay F,Lévêque N,Gacouin A,et al.Fatal coxsackievirus A-16 pneumonitis in adult[J].Emerg Infect Dis,2007,13(7):1084-6.
    [3] Wang CY,Li LF,Wu MH,et al.Fatal coxsakievirus A16 infection[J].Pediatr Infect Dis J,2004,23(3):275-6.
    [4] 王慎玉,朱凤才,汪华.柯萨奇病毒A组16型研究新进展[J].中国疾病控制杂志,2014,18(1):68-73.
    [5] Yamayoshi S,Yamashita Y,Li J,et al.Scavenger receptor B2 is a cellular receptor for enterovirus 71[J].Nat Med,2009,15(7):798-801.
    [6] Nishimura Y,Shimojima M,Tano Y,et al.Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71[J].Nat Med,2009,15(7):794-7.
    [7] Laganowsky A,Reading E,Allison TM,et al.Membrane proteins bind lipids selectively to modulate their structure and function[J].Nature,2014,510(7503):172-5.
    [8] Sezgin E,Levental I,Mayor S,et al.The mystery of membrane organization:composition,regulation and roles of lipid rafts[J].Nat Rev Mol Cell Biol,2017,18(6):361-74.
    [9] Yang ST,Kiessling V,Simmons JA,et al.HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains[J].Nat Chem Biol,2015,11(6):424-31.
    [10] Patel KP,Coyne CB,Bergelson JM.Dynamin-and lipid raft-dependent entry of decay-accelerating factor(DAF)-binding and non-DAF-binding coxsackieviruses into nonpolarized cells[J].J Virol,2009,83(21):11064-77.
    [11] Karnauchow TM,Tolson DL,Harrison BA,et al.The HeLa cell receptor for enterovirus 70 is decayaccelerating factor (CD55)[J].J Virol,1996,70(8):5143-52.
    [12] Parto R,Li M.Exploitation of major histocompatibility complex class I molecules and eaveolae by simian virus 40[J].Immunol Rev,1999(168):23-31.
    [13] 吴寒宇,黄红兰.脂筏及其在病原生物感染中的作用概述[J].中国病原生物学杂志,2011,6(6):458-9,463.
    [14] Marjomaki V,Pietiainen V,Matilainen H,et al.Internalization of echovirus 1 in caveolae[J].J Virol,2002,76(4):1856-65.
    [15] Damm EM,Pelkmans L,Kartenbeck J,et al.Clathrin- and caveolin-1-independent endocytosis:entry of simian virus 40 into cells devoid of caveolae[J].J Cell Biol,2005,168(3):477-88.
    [16] Zhu YZ,Wu DG,Ren H,et al.The role of lipid rafts in the early stage of Enterovirus 71 infection[J].Cell Physiol Biochem,2015,35(4):1347-59.
    [17] Danthi P,Chow M.Cholesterol removal by methyl-beta-cyclodextrin inhibits poliovirus entry[J].J Virol,2004,78(1):33-41.
    [18] Heikkil?O,Susi P,Tevaluoto T,et al.Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin,dynamin,and Arf6 but not by caveolin-1 or clathrin[J].J Virol,2010,84(7):3666-81.
    [19] Nicholson-Weller A.Decay accelerating factor (CD55)[J].Curr Top Microbiol Immunol,1992(178):7-30.
    [20] Pitha J,Irie T,Sklar PB,et al.Drug solubilizers to aid pharmacologists:amorphous cyclodextrin derivatives[J].Life Sci,1988,43(6):493-502.