平台化学品短链支链脂肪酸和短链支链醇的微生物代谢工程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in metabolic engineering for the microbial production of short branched-chain fatty acids and short branched-chain alcohols
  • 作者:于爱群 ; 庞亚如 ; 胡智慧 ; 肖冬光
  • 英文作者:YU Ai-Qun;PANG Ya-Ru;HU Zhi-Hui;XIAO Dong-Guang;State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology;
  • 关键词:短链支链脂肪酸 ; 短链支链醇 ; 平台化学品 ; 代谢工程
  • 英文关键词:Short branched-chain fatty acids;;Short branched-chain alcohols;;Platform chemicals;;Metabolic engineering
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:天津科技大学生物工程学院省部共建食品营养与安全国家重点实验室工业发酵微生物教育部重点实验室天津市工业微生物重点实验室;
  • 出版日期:2017-05-25 17:51
  • 出版单位:微生物学通报
  • 年:2018
  • 期:v.45
  • 基金:天津市自然科学基釐绿色通道项目(17JCYBJC40800);; 天津市教委科研计划项目重点项目(2017ZD03);; 天津科技大学“海河学者”培育计划引迚人才基釐(1185/10278);; 南开大学分子微生物学与技术教育部重点实验室开放课题~~
  • 语种:中文;
  • 页:WSWT201801022
  • 页数:8
  • CN:01
  • ISSN:11-1996/Q
  • 分类号:180-187
摘要
短链支链脂肪酸和短链支链醇均为重要的平台化学品,是合成多种高附加值产品的前体物质,市场需求巨大。目前两者的生产主要是利用基于石化原料的化学合成法。化学合成法存在着严重依赖化石燃料、反应效率低以及极易造成环境污染等缺点。微生物代谢工程的快速发展为这些平台化学品的生产提供了一条极具潜力的生物合成路线。利用微生物代谢工程技术构建生产这些平台化学品的微生物细胞工厂具有绿色清洁、可持续发展和经济效益好等独特优势。本文系统综述了近年来微生物代谢工程技术在短链支链脂肪酸和短链支链醇合成方面的研究进展,包括所涉及的宿主菌株、关键酶、代谢途径及其改造等,并探讨了未来的发展前景。
        Short branched-chain fatty acids and short branched-chain alcohols(SBCFAs and SBCAs, C4-6) serve as versatile platform chemicals for the chemical industry. They are commonly used as starting materials or building blocks to produce a wide range of valuable end products in chemical, food and pharmaceutical industries. Therefore, there is a huge demand for such platform chemicals in the global market. Currently, SBCFAs and SBCAs are predominantly produced through traditional chemical synthesis. However, these chemical conversion processes are heavily dependent on fossil fuels and always lead to serious environmental pollution. Moreover, the efficiency of these processes is often low. Recently, rapid developments in metabolic engineering of microbes provide a promising alternative to produce these platform chemicals. These bio-based manufacturing systems using microbial cell factories will help move the industrial production of SBCFAs and SBCAs towards more sustainable, environmentally friendly and economically competitive. Here, we reviewed the current status of metabolic engineering of microbes that produce SBCFAs and SBCAs including microbial hosts, key enzymes, metabolic pathways and engineering of SBCFA/SBCA biosynthesis. Furthermore, key challenges and future perspectives were discussed.
引文
[1]Jang YS,Kim B,Shin JH,et al.Bio-based production of C2-C6platform chemicals[J].Biotechnology and Bioengineering,2012,109(10):2437-2459
    [2]Lampitt LH.Nitrogen metabolism in Saccharomyces cerevisiae[J].Biochemical Journal,1919,13(4):459-486
    [3]Thorne RSW.The assimilation of nitrogen from amino-acids by yeast[J].Journal of the Institute of Brewing,1937,43(4):288-293
    [4]Thorne RSW.The growth and fermentation of a strain of S.cerevisiae with amino acids as nutrients[J].Journal of the Institute of Brewing,1941,47(5):255-272
    [5]Hazelwood LA,Daran JM,van Maris AJA,et al.The Ehrlich pathway for fusel alcohol production:a century of research on Saccharomyces cerevisiae metabolism[J].Applied and Environmental Microbiology,2008,74(8):2259-2266
    [6]Eden A,Simchen G,Benvenisty N.Two yeast homologs of ECA39,a target for c-Myc regulation,code for cytosolic and mitochondrial branched-chain amino acid aminotransferases[J].Journal of Biological Chemistry,1996,271(34):20242-20245
    [7]Kispal G,Steiner H,Court DA,et al.Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast,homologs of the myc oncogene-regulated Eca39 protein[J].Journal of Biological Chemistry,1996,271(40):24458-24464
    [8]Iraqui I,Vissers S,Cartiaux M,et al.Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily[J].Molecular and General Genetics MGG,1998,257(2):238-248
    [9]Ter Schure EG,Flikweert MT,van Dijken JP,et al.Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,1998,64(4):1303-1307
    [10]Hohmann S.PDC6,a weakly expressed pyruvate decarboxylase gene from yeast,is activated when fused spontaneously under the control of the PDC1 promoter[J].Current Genetics,1991,20(5):373-378
    [11]Hohmann S.Characterisation of PDC2,a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae[J].Molecular and General Genetics MGG,1993,241(5):657-666
    [12]Hohmann S,Cederberg H.Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5[J].European Journal of Biochemistry,1990,188(3):615-621
    [13]Dickinson JR,Salgado LE,Hewlins MJ.The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae[J].Journal of Biological Chemistry,2003,278(10):8028-8034
    [14]Vuralhan Z,Luttik MA,Tai SL,et al.Physiological characterization of the ARO10-dependent,broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,2005,71(6):3276-3284
    [15]Vuralhan Z,Morais MA,Tai SL,et al.Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,2003,69(8):4534-4541
    [16]Ford G,Ellis EM.Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase[J].Yeast,2002,19(12):1087-1096
    [17]Hauser M,Horn P,Tournu H,et al.A transcriptome analysis of isoamyl alcohol-induced filamentation in yeast reveals a novel role for Gre2p as isovaleraldehyde reductase[J].FEMS Yeast Research,2007,7(1):84-92
    [18]Boer VM,Tai SL,Vuralhan Z,et al.Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures[J].FEMS Yeast Research,2007,7(4):604-620
    [19]Hazelwood LA,Tai SL,Boer VM,et al.A new physiological role for Pdr12p in Saccharomyces cerevisiae:export of aromatic and branched-chain organic acids produced in amino acid catabolism[J].FEMS Yeast Research,2006,6(6):937-945
    [20]Kren A,Mamnun YM,Bauer BE,et al.War1p,a novel transcription factor controlling weak acid stress response in yeast[J].Molecular and Cellular Biology,2003,23(5):1775-1785
    [21]Baez A,Cho KM,Liao JC.High-flux isobutanol production using engineered Escherichia coli:a bioreactor study with in situ product removal[J].Applied Microbiology and Biotechnology,2011,90(5):1681-1690
    [22]Matsuda F,Ishii J,Kondo T,et al.Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance[J].Microbial Cell Factories,2013,12(1):119
    [23]Li SS,Wen JP,Jia XQ.Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression[J].Applied Microbiology and Biotechnology,2011,91(3):577-589
    [24]Higashide W,Li YC,Yang YF,et al.Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose[J].Applied and Environmental Microbiology,2011,77(8):2727-2733
    [25]Lin PP,Rabe KS,Takasumi JL,et al.Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius[J].Metabolic Engineering,2014,24:1-8
    [26]Lin PP,Mi L,Morioka AH,et al.Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum[J].Metabolic Engineering,2015,31:44-52
    [27]Atsumi S,Higashide W,Liao JC.Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J].Nature Biotechnology,2009,27(12):1177-1180
    [28]Li H,Opgenorth PH,Wernick DG,et al.Integrated electromicrobial conversion of CO2 to higher alcohols[J].Science,2012,335(6076):1596
    [29]Yuan JF,Chen X,Mishra P,et al.Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production[J].Applied Microbiology and Biotechnology,2017,101(1):465-474
    [30]Vogt M,Brüsseler C,van Ooyen J,et al.Production of2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum[J].Metabolic Engineering,2016,38:436-445
    [31]Connor MR,Liao JC.Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol[J].Applied and Environmental Microbiology,2008,74(18):5769-5775
    [32]Cann AF,Liao JC.Production of 2-methyl-1-butanol in engineered Escherichia coli[J].Applied Microbiology and Biotechnology,2008,81(1):89-98
    [33]Shen CR,Liao JC.Photosynthetic production of2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase[J].Energy&Environmental Science,2012,5(11):9574-9583
    [34]Yu AQ,Juwono NK,Foo JL,et al.Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids[J].Metabolic Engineering,2015,34:36-43
    [35]Atsumi S,Hanai T,Liao JC.Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J].Nature,2008,451(7174):86-89
    [36]Kondo T,Tezuka H,Ishii J,et al.Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae[J].Journal of Biotechnology,2012,159(1/2):32-37