堆芯在线监测系统SOMPAS中子学计算核心测试验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Test and Verification of Neutronics Calculation Kernel for Core On-line Monitoring System SOMPAS
  • 作者:杨伟焱 ; 汤春桃 ; 杨波 ; 张宏博 ; 费敬然 ; 曹泓 ; 党哈雷 ; 杜炳
  • 英文作者:YANG Weiyan;TANG Chuntao;YANG Bo;ZHANG Hongbo;FEI Jingran;CAO Hong;DANG Halei;DU Bing;Shanghai Nuclear Engineering Research & Design Institute Co., Ltd.;
  • 关键词:堆芯在线监测系统 ; 中子学计算核心 ; 堆芯核设计软件系统
  • 英文关键词:core on-line monitoring system;;neutronics calculation kernel;;core nuclear design system
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:上海核工程研究设计院有限公司;
  • 出版日期:2019-04-13 15:02
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 语种:中文;
  • 页:YZJS201907010
  • 页数:7
  • CN:07
  • ISSN:11-2044/TL
  • 分类号:68-74
摘要
SOMPAS是上海核工程研究设计院有限公司(SNERDI)开发的堆芯在线监测系统,其中子学计算核心为SNERDI最新开发的堆芯核设计系统SCAP。SCAP在SOMPAS中应用前必须进行全面的测试,特别是与电厂实测值比较,以验证确认其精度、可靠性和适用性等。测试验证对象为我国自主开发的300 MWe级核电站,涵盖秦山一期和恰希玛1、2号机组总共32个循环的电厂实测数据。数值计算结果表明,SCAP具有很高的计算精度和可靠性,满足作为中子学计算核心在SOMPAS中应用的要求。
        The core on-line monitoring system SOMPAS was developed by Shanghai Nuclear Engineering Research & Design Institute Co., Ltd.(SNERDI). SOMPAS uses core nuclear design system SCAP newly developed by SNERDI as the neutronics calculation kernel. Before SCAP is applied in SOMPAS, it must be fully tested, especially compared with the measured values of the power plants to verify its accuracy, reliability and applicability. The objects of verification are 300 MWe nuclear power plants independently developed by China, including a total of 32 cycles of the measured values for Qinshan and Chashma unit 1 & 2. The numerical calculation results show that the neutronics calculation kernel SCAP has high calculation accuracy and reliability, and meets the requirement of neutronics calculation kernel application in the SOMPAS.
引文
[1] 杨伟焱,汤春桃,毕光文,等.堆芯核设计程序CYCAS少群截面模型开发[J].原子能科学技术,2016,50(5):859-863.YANG Weiyan,TANG Chuntao,BI Guangwen,et al.Development of few group cross section calculation model for core nuclear design code CYCAS[J].Atomic Energy Science and Technology,2016,50(5):859-863(in Chinese).
    [2] 毕光文,汤春桃,杨波.堆芯核设计程序CYCAS动力学模型开发[J].原子能科学技术,2016,50(5):864-868.BI Guangwen,TANG Chuntao,YANG Bo.Development of kinetics model in core nuclear design code CYCAS[J].Atomic Energy Science and Technology,2016,50(5):864-868(in Chinese).
    [3] 毕光文,汤春桃,杨波,等.SOMPAS在线监测功能开发[C]//第十七届反应堆数值计算和粒子输运学术会议暨2018年反应堆物理会议.深圳:中国核学会计算物理学会反应堆数值计算与离子输运专业委员会,2018.
    [4] 张宏博,汤春桃,杨伟焱,等.组件计算程序PANDA研发及初步验证[J].强激光与粒子束,2017,29(4):29046004.ZHANG Hongbo,TANG Chuntao,YANG Wei-yan,et al.Development and verification for the lattice code PANDA[J].High Power Laser and Particle Beams,2017,29(4):29046004(in Chinese).
    [5] MATSUMOTO H,OUISLOUMEN M,TAKEDA T.Spatially dependent self-shielding method with temperature distribution for the two-dimensional transport code PARAGON[J].Journal of Nuclear Science and Technology,2006,43 (11):1 311-1 319.
    [6] GOLDBERG L,VUJIC J,LEONARD A,et al.The method of characteristics in general geometry[J].Trans Am Nucl Soc,1995,73:172-173.
    [7] YOON J I,JOO H G.Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernals[J].Journal of Nuclear Science and Technology,2008,45(7):668-682.
    [8] 谢仲生.压水堆核电厂堆芯燃料管理计算及优化[M].北京:原子能出版社,2001.
    [9] PUSA M,LEPPANEN J.Computing the matrix exponential in burnup calculaions[J].Nucl Sci Eng,doi:10.13182/nse09-14.
    [10] ZIMIN V G,NINKOKATA H,POGOSBEKYAN L R.Polynomial and semi-analytic nodal methods for nonlinear iteration procedure[C]∥Proceedding of the International Conference on the Physics of Nuclear Science and Technology.[S.l.]:[s.n.],1998:994-1 002.
    [11] JOO H G,YOON J I,BAEK S G.Multigroup pin power reconstruction with two-dimensional source expansion and corner flux discontinuity[J].Annals of Nuclear Energy,doi:10.1016/j.anucene.2008.10.003.
    [12] STAMMLER R J J,ABBATE M J.Methods of steady-state reactor physics in nuclear design[M].London:Academic Press,1983:380-384.