重点煤电基地大气污染物扩散对京津冀的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of air pollutants transport from key coal and electricity production bases on Beijing-Tianjin-Hebei region
  • 作者:伯鑫 ; 田飞 ; 唐伟 ; 李洋 ; 杜晓惠 ; 雷勋杰 ; 李时蓓 ; 赵晓宏 ; 孙洪涛 ; 周北海
  • 英文作者:BO Xin;TIAN Fei;TANG Wei;LI Yang;DU Xiao-hui;LEI Xun-jie;LI Shi-bei;ZHAO Xiao-hong;SUN Hong-tao;ZHOU Bei-Hai;School of Energy and Environmental Engineering, University of Science and Technology Beijing;The Appraisal Center for Environment and Engineering, Ministry of Environmental Protection;Shandong Academy of Enviromental Science;Chinese Research Academy of Environmental Sciences;Guangxi Bohuan Environmental Consulting Services Co., Ltd;
  • 关键词:京津冀 ; 鄂尔多斯\宁东\锡林郭勒 ; 能源基地 ; CAMx ; PM_(2.5)
  • 英文关键词:Beijing-Tianjin-Hebei region;;Erdos\Ningdong\Xilingol;;energy base;;CAMx;;PM_(2.5)
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京科技大学能源与环境工程学院;环境保护部环境工程评估中心;山东省环境保护科学研究设计院;中国环境科学研究院;广西博环环境咨询服务有限公司;
  • 出版日期:2019-02-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划项目(2016YFC0208101);; 国家自然科学基金资助项目(71673107);; 大气重污染成因与治理攻关项目(DQGG0209-07、DQGG0304-07)
  • 语种:中文;
  • 页:ZGHJ201902009
  • 页数:9
  • CN:02
  • ISSN:11-2201/X
  • 分类号:68-76
摘要
基于排放源清单,采用空气质量模式CAMx模拟现状情景下,鄂尔多斯、宁东与锡林格勒排放污染物扩散对京津冀地区的影响.结合3地区已批复环境影响报告、规划环评与战略环评等污染物排放数据,估算未来情景下3地区能源基地污染物排放对京津冀的影响.结果表明:现状情景下,3地区排放的PM_(2.5)、SO_2与NO_x对京津冀的贡献浓度范围分别为0.079~1.134,0.012~0.633,0.008~0.852μg/m~3,冬季对京津冀地区的影响要高于夏季,对京津冀地区冬季的平均贡献浓度值为0.710,0.339与0.413μg/m~3,影响较大的京津冀城市为衡水市、石家庄市、邢台市、邯郸市与保定市;未来情景下3地区能源基地排放的PM_(2.5)、SO_2与NO_x对京津冀城市浓度贡献范围分别为0.049~0.773,0.003~0.176,0.008~0.731μg/m~3,冬季平均贡献浓度值为0.475,0.096与0.357μg/m~3.
        The regional air quality model CAMx was used to simulate the source contributions from Erdos, Ningdong and Xilingol(ENX) to the Beijing-Tianjin-Hebei region(BTH). The air quality impacts on the BTH region were evaluated using projected futureemission inventory with the emission data from the approved environmental impact assessment, air quality planning and strategicplanning, and the current emission inventory in ENX as two different scenarios. The results showed that the modeled contributions ofPM_(2.5), SO_2 and NO_x from energy bases in ENX to BTH were in the ranges of 0.079~1.134μg/m3, 0.012~0.633μg/m~3 and0.008~0.852μg/m~3, respectively with current emissions. The impacts from ENX on BTH were higher in winter with the averagedvalues of 0.710, 0.339 and 0.413μg/m~3, respectively than that in summer. It has greater influence on air quality in Hengshui,Shijiazhuang, Xingtai, Handan and Baoding than the other cities in BTH. The modeled contributions of PM_(2.5), SO_2 and NO_x fromenergy bases in ENX using future emissions to BTH were in the ranges of 0.049~0.773μg/m~3, 0.003~0.176μg/m~3 and0.008~0.731μg/m~3, respectively, with the averaged values of 0.475,0.096, and 0.357μg/m~3 in winter.
引文
[1]梁增强,马民涛,杜改芳.京津冀地区区域环境污染研究进展[J].四川环境,2013,32(4):126-130.Liang Z Q,Ma M T,Du G F.Research progress of regional environmental pollution in Beijing-Tianjin-Hebei area[J].Sichuan Environment,2013,32(4):126-130.
    [2]李磊,张贵祥.京津冀都市圈经济增长与生态环境关系研究[J].生态经济,2014,30(9):167-171.Li L,Zhang G X.Research on the relationship between economic growth and ecological environment of Beijing-Tianjin-Hebei Metropolitan[J].Ecological Economy,2014,30(9):167-171.
    [3]马一丁,付晓,吴钢.锡林郭勒盟煤电基地大气环境容量分析及预测[J].生态学报,2017,37(15):5221-5227.Ma Y D,Fu X,Wu G.Analysis and prediction of the atmospheric environmental capacity of the Xilinguole League's coal-based electricity region[J].Ecologica Sinica,2017,37(15):5221-5227.
    [4]李巍,侯锦湘,刘雯.资源型城市工业规划的环境基线空间评价方法-以鄂尔多斯市主导产业发展规划环评为例[J].环境科学与技术,2010,33(6):384-389.Li W,Hou J X.Liu W.Environmental baseline space assessment method for industrial planning of the resource based cities with an example of environmental impact assessment of the pillar industry planning of Ordos in China[J].Environmental Science&Technology,2010,33(6):384-389.
    [5]李喜仓,百美兰,马玉峰,等.鄂尔多斯市城区发展对局地大气环境影响的数值模拟[J].气象与环境学报,2011,27(3):61-66.Li X C,Bai M L,Ma Y F,et al.Numerical simulation on the influence of urban development on the local atmospheric environment in Dong sheng district of Erdos Inner Mongolia autonomous region[J].Journal of Meteorology and Environment,2011,27(3):61-66.
    [6]张书海.考虑城际传输的区域空气污染联动治理研究[D].上海:上海大学,2017.Zhang S H.Joint governance of regional air pollution considering pollution intercity transportation[D].Shanghai:Shanghai University,2017.
    [7]伯鑫,王刚,温柔,等.京津冀地区火电企业的大气污染影响[J].中国环境科学,2015,35(2):364-373.Bo X,Wang G,Wen R,et al.The impact of thermal power enterprises on the air pollution in Beijing-Tianjin-Hebei region[J].Chinese Environmental Science,2015,35(2):364-373.
    [8]Yu L D,Wang G F,Zhang R J,et al.Characterization and source apportionment of PM2.5 in an urban environment in Beijing[J].Aerosol and Air Quality Research,2013,13(2):574-583.
    [9]吴文景,常兴,邢佳,等.京津冀地区主要排放源减排对PM2.5污染改善贡献评估[J].环境科学,2017,38(3):867-874.Wu W J,Chang X,Xing J,et al.Assessment of PM2.5 pollution mitigation due to emission reduction from main emission sources in the Beijing-Tianjin-Hebei region[J].Environmental Science,2017,38(3):867-874.
    [10]Tian Y Z,Chen G,Wang H T,et al.Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method[J].Chemosphere,2016,147:256-263.
    [11]Wang G,Cheng S Y,Li J B,et al.Source apportionment and seasonal variation of PM2.5 carbonaceous aerosol in the Beijing-Tianjin-Hebei region of China[J].Environmental Monitoring and Assessment,2015,187(3):143.
    [12]北京市环境保护局.北京市正式发布PM2.5来源解析研究成果[EB/OL].http://www.bjepb.gov.cn/bjepb/323265/340674/396253/index.html,2014-04-16.
    [13]天津市环境保护局.天津发布颗粒物源解析结果[EB/OL].http://www.tjhb.gov.cn/root16/mechanism_1006/environmental_protection_propaganda_and_education_center/201411/t20141112_6464.html.2014-08-25.
    [14]石家庄市环境保护局.河北11市完成PM2.5源解析[EB/OL].http://www.sjzhb.gov.cn/cyportal2.3/template/site00_article@sjzhbj.jsp?article_id=8afaa1614cd9a176014d553231f26b33&parent_i d=8afaa16142796386014279efe11b0937&parent Type=0&site ID=site00&f_channel_id=null&a1b2dd=7xaac.2015-05-15.
    [15]伯鑫,徐峻,杜晓惠,等.京津冀地区钢铁企业大气污染影响评估[J].中国环境科学,2017,37(5):1684-1692.Bo X,Xu J,Du X H,et al.Impacts assessment of steel plants on air quality over Beijing-Tianjin-Hebei area[J].Chinese Environmental Science,2017,37(5):1684-1692.
    [16]Liu J,Mauzerall D L,Chen Q,et al.Air pollutant emissions from Chinese households:A major and underappreciated ambient pollution source[J].Proceedings of the National Academy of Science of the United States of America,2016,113:7756-7761.
    [17]Chen Y,Tian C,Feng Y,et al.Measurements of emission factors of PM2.5,OC,EC,and BC for household stoves of coal combustion in China[J].Atmospheric Environment,2015,109:190-196.
    [18]Li Q,Jiang J K,Zhang Q,et al.Influences of coal size,volatile matter content,and additive on primary particulate matter emissions from household stove combustion a[J].Fuel,2016,182:780-787.
    [19]Zavala M,Barrera H,Morante J,et al.Analysis of model-based PM2.5emission factors for on-road mobile sources in Mexico[J].Atmósfera,2013,26(1):109-124.
    [20]李云燕,殷晨曦.京津冀地区PM2.5减排实效与影响因素的门限效应[J].中国环境科学,2017,37(4):1223-1230.Li Y Y,Yin C X.Threshold effect of socio-economic factors influencing PM2.5 in Beijing-Tianjin-Hebei[J].Chinese Environmental Science,2017,37(4):1223-1230.
    [21]李海萍,赵颖,傅毅明.京津冀国家干线公路污染空间特征分析[J].环境科学学报,2016,36(10):3515-3526.Li H P,Zhao Y,Fu Y M.Spatial distribution of air pollutant emissions from national trunk highway in Beijing-Tianjin-Hebei(BTH)[J].Acta Scientiae Circumstantiae,2016,36(10):3515-3526.
    [22]黄蕊珠,陈焕盛,葛宝珠,等.京津冀重霾期间PM2.5来源数值模拟研究[J].环境科学学报,2015,35(9):2671-2680.Huang R Z,Chen H S,Ge B Z,et al.2015.Numerical study on source contributions to PM2.5 over Beijing-Tianjin-Hebei area during a severe haze event[J].Acta Scientiae Circumstantiae,35(9):2670-2680.
    [23]周磊,武建军,贾瑞静,等.京津冀PM2.5时空分布特征及其污染风险因素[J].环境科学研究,2016,29(4):483-493.Zhou L,Wu J J,Jia R J,et al.Investigation of temporal-spatial characteristics and underlying risk factors of PM2.5 pollution in Beijing-Tianjin-Hebei Area[J].Research of Environmental Sciences,2016,29(4):483-493.
    [24]王晓琦,郎建垒,程水源,等.京津冀及周边地区PM2.5传输规律研究[J].中国环境科学,2016,36(11):3211-3217.Wang X Q,Lang J L,Cheng S Y,et al.Study on transportation of PM2.5 in Beijing-Tianjin-Hebei(BTH)and its surrounding area[J].Chinese Environmental Science,2016,36(11):3211-3217.
    [25]王燕丽,薛文博,雷宇,等.京津冀区域PM2.5污染相互输送特征[J].环境科学,2017,38(12):4897-4904.Wang Y L,Xue W B,Lei Y,et al.Regional transport matrix study of PM2.5in Jingjinji region[J].Environmental Science,2017,38(12):4897-4904.
    [26]ENVIRON:CAMx Users’Guide,version 6.40[M].ENVIRONInternational Corporation,Novato,CA,2014.
    [27]Yarwood G,Wilson G,Morris R.Development of the CAMx Particulate source apportionment technology(PSAT)[R].Prepared for the Lake Michigan Air Directors Consortium,by Environ International Corporation,Novato,CA,2005.
    [28]王继康.东亚地区典型大气污染物源-受体关系的数值模拟研究[D].北京:中国环境科学研究院,2014.Wang J K.Numerical simulation and source-receptor relationships of typical air pollutants over East Asia[D].Beijing:Chinese Research Academy of Environmental Science,2014.
    [29]程念亮.东亚春季典型天气过程空气污染输送特征的数值模拟研究[D].北京:中国环境科学研究院,2013.Cheng N L.Simulation study on the air pollution transport characteristics of typical weather in East Asia in Spring[D].Beijing:Chinese Research Academy of Environmental Science,2013.
    [30]杜晓惠,徐峻,刘厚凤,等.重污染天气下电力行业排放对京津冀地区PM2.5的贡献[J].环境科学研究,2016,29(4):475-482.Du X H,Xu J,Liu H F,et al.Contribution of power plant emissions to PM2.5 over Beijing-Tianjin-Hebei area during heavy pollution periods[J].Research of Environmental Sciences,2016,29(4):475-482.
    [31]高愈霄,霍晓芹,闫慧,等.京津冀区域大气重污染过程特征初步分析[J].中国环境监测,2016,32(6):26-35.Gao Y X,Huo X Q,Yan H,et al.Preliminary analysis on the characteristics of heavy air pollution events in Beijing-Tianjin-Hebei region[J].Environmental Monitoring in China,2016,32(6):26-35.
    [32]安树伟,郁鹏,母爱英.基于污染物排放的京津冀大气污染治理研究[J].城市与环境研究,2016,02(17):17-29.An S W,Yu P,Mu A Y.Study on air pollution control of BeijingTianjin-Hebei based on pollutant emission[J].Urban and Environmental Studies,2016,02(17):17-29.
    [33]郎建垒.基于大气污染物总量控制的区域污染源分级与优化减排技术研究[D].北京:北京工业大学,2013.Lang J L.Research on regional pollution source classification and emission reduction optimization technology based on total air pollutant control[D].Beijing:Beijing University of Technology,2013.