基于不同人为干扰的土壤全量氮磷钾空间变异性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial variability of total nitrogen,phosphorus,and potassium in soil under different human disturbances
  • 作者:刘靖朝 ; 熊黑钢 ; 何旦旦 ; 乔娟峰 ; 郑曼迪
  • 英文作者:LIU Jing-chao;XIONG Hei-gang;HE Dan-dan;QIAO Juan-feng;ZHENG Man-di;College of Resource and Environment Sciences,Xinjiang University,Laboratory of Oasis Ecology,Ministry of Education;Department of Urban Study,College of Art Science,Beijing Union University;
  • 关键词:土壤全量氮磷钾 ; 空间异质性 ; 地统计学 ; 人为干扰 ; 人为干扰
  • 英文关键词:TN,TP and TK in soil;;spatial heterogeneity;;geostatistics;;human disturbance area;;no-human disturbance area
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:新疆大学资源与环境科学学院教育部重点实验室;北京联合大学应用文理学院城市系;
  • 出版日期:2019-01-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.172
  • 基金:国家自然科学基金项目“干旱区人类活动胁迫下绿洲水盐时空变化规律研究”(41671198)
  • 语种:中文;
  • 页:GHDQ201901017
  • 页数:8
  • CN:01
  • ISSN:61-1088/S
  • 分类号:122-128+165
摘要
采用地统计学与GIS技术相结合的方法,对无人为干扰区25个样本、人为干扰区30个样本土壤全量氮磷钾的空间异质性进行了研究。结果表明:人为干扰区土地多被开发成林地、育苗地,自然植被残体等被移除,土壤腐殖质来源减少,加之由于土层翻动,土壤透气性变好,加快了养分分解与利用,土壤全量氮磷钾含量均值分别降低至0.433、0.902、15.325 g·kg~(-1),数据间的差异性和分布状态也发生变化;球状模型能较好地拟合无人为干扰区土壤全磷分布,而高斯模型则能较高地拟合两区其余养分指标的分布,两区理论模型的R2介于0.66和0.90之间,拟合精度高;土壤全量氮磷钾的理论模型中,均以无人为干扰区模型的R2高且RSS小;无人为干扰区全量氮磷钾的高值区均在植被覆盖度高的区域内。干扰程度较大的区域,土壤全氮和全磷含量较低,因此应补充适量氮肥和磷肥,满足养分需求。
        The spatial heterogeneity of soil total nitrogen,phosphorus and potassium in 25 samples from area without human activities and 30 samples from human disturbed area were studied using geostatistics and GIS. The results showed that the land of human-disturbed area was mostly exploited as forest land and nursery field. Due to the removal of vegetation residues by human activity,the source of soil humus was eliminated. For the plowing of the land,the soil was more aerated. As a result,it accelerated the decomposition and utilization of nutrients in soil.So,the average amount of total N,P,and K in the soil decreased to 0. 433,0. 902,and 15. 325 g ·kg~(-1),the differences and distributions between the datas also varied. The spherical model well modeled the soil total P distribution in the non-man disturbed area. However,the Gaussian model modeled the distribution of the other nutrients in both areas well. The R2 values of models for the two areas were between 0.66 and 0.90,and correlation was high.The theoretical model of total N,P,and K had high R2 but low RSS for the undisturbed area. The land with high total N,P,and K in the undisturbed area had high vegetation coverage. In the area with a high intensity of disturbance,the contents of total N and P in the soil were relatively low,therefore,proper amount of N and P fertilization should be added to meet the plant nutrient requirements.
引文
[1]杨艳丽,史学正,于东升,等.区域尺度土壤养分空间变异及其影响因素研究[J].地理科学,2008,28(6):788-792.
    [2]赵锐锋,陈亚宁,洪传勋,等.塔里木河源流区绿洲土壤含盐量空间变异和格局分析———以岳普湖绿洲为例[J].地理研究,2008,27(1):135-144.
    [3]姚荣江,杨劲松,刘广明.黄河三角洲地区典型地块地下水特征的空间变异性研究[J].土壤通报,2006,37(6):1071-1075.
    [4]苏松锦,刘金福,何中声,等.格氏栲天然林土壤养分空间异质性[J].生态学报,2012,32(18):5673-5682.
    [5]杨秀清,韩有志,李乐,等.华北山地典型天然次生林土壤氮素空间异质性对落叶松幼苗更新的影响[J].生态学报,2009,29(9):4656-4664.
    [6]季荣,李典谟,谢宝瑜,等.基于沿海蝗区飞蝗卵块分布格局的土壤空间异质性[J].生态学报,2007,27(3):1019-1025.
    [7]何艳芬,马超群.东北黑土资源及其农业可持续利用研究[J].干旱区资源与环境,2003,17(4):24-28.
    [8]刘璐,曾馥平,宋同清,等.喀斯特木论自然保护区土壤养分的空间变异特征[J].应用生态学报,2010,21(7):1667-1673.
    [9]司建华,冯起,鱼腾飞,等.额济纳绿洲土壤养分的空间异质性[J].生态学杂志,2009,28(12):2600-2606.
    [10]王秀虹,于东升,潘月,等.单种复合类型单元土壤全量元素空间变异的幅度效应[J].土壤学报,2017,54(4):864-873.
    [11]刘付程,史学正,于东升,等.太湖流域典型地区土壤全氮的空间变异特征[J].地理研究,2004,23(1):63-70.
    [12] Zhang Z Q,Yu D S,Shi X Z,et al.Effect of sampling classificationpatterns on SOC variability in the red soil region,China[J].Soil&Tillage Research,2010,110(1):2-7.
    [13]曹祥会,龙怀玉,周脚根,等.中温-暖温带表土碳氮磷生态化学计量特征的空间变异性———以河北省为例[J].生态学报,2017,37(18):6053-6063.
    [14]王维奇,曾从盛,钟春棋,等.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学,2010,31(10):2411-2416.
    [15]秦山,潮洛濛.人为干扰对乌海市四合木小灌木景观的影响[J].生态学报,2014,34(21):6346-6354.
    [16]于洋.新疆阜康煤田瓦斯渗流性的数学模型研究[D].乌鲁木齐:新疆大学,2013.
    [17]中国科学院南京土壤研究所.中国土壤数据库.[DB/OL].[2017-11-03],http://vdb3.soil.csdb.
    [18]张金池,李海东,林杰,等.基于小流域尺度的土壤可蚀性K值空间变异[J].生态学报,2008,28(5):2199-2206.
    [19]田野,郭子祺,乔彦超,等.基于遥感的官厅水库水质监测研究[J].生态学报,2015,35(7):2217-2226.
    [20]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998:356.
    [21]王小艳,冯跃华,李云,等.黔中喀斯特山区村域稻田土壤理化特性的空间变异特征及空间自相关性[J].生态学报,2015,35(9):2926-2936.
    [22]王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999:150-156.
    [23]白军红,邓伟,张玉霞,等.洪泛区天然湿地土壤有机质及氮素空间分布特征[J].环境科学,2002,23(2):77-81.
    [24]黄昌勇.土壤学[M].北京:中国农业出版社,2000:192-208.
    [25]徐晓燕,马毅杰,张瑞平.土壤中钾的转化及其与外源钾的相互关系的研究进展[J].土壤通报,2003,34(5):489-492.
    [26]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报,2006,26(11):3685-3695.
    [27]沈雅飞,王娜,刘泽彬,等.三峡库区消落带土壤化学性质变化[J].水土保持学报,2016,30(3):190-195.