CSTR系统制备高性能Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2及电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Electrochemical Properties of High-performance Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2 Ternary Cathode for Lithium-ion Batteries in CSTR System
  • 作者:崔永福 ; 崔金龙 ; 满建宗 ; 付鹏 ; 张鹏超 ; 李嵩 ; 文钟晟 ; 孙俊才
  • 英文作者:Cui Yongfu;Cui Jinlong;Man Jianzong;Cheng Fupeng;Zhang Pengchao;Li Song;Wen Zhongsheng;Sun Juncai;Dalian Maritime University;
  • 关键词:锂离子电池 ; 正极材料 ; CSTR ; 共沉淀法
  • 英文关键词:lithium-ion battery;;cathode material;;electrochemical performance;;co-precipitation
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:大连海事大学;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:国家自然科学基金(51479019,21476035);; 中央高校基本科研业务费(3132016341)
  • 语种:中文;
  • 页:COSE201902032
  • 页数:7
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:235-241
摘要
采用共沉淀法在连续搅拌反应器系统(CSTR)工艺体系中批量合成出镍钴锰三元氢氧化物前驱体Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2(622),掺加适量的Li_2CO_3高温焙烧后得到锂离子二次电池正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2。使用扫描电子显微镜(SEM)观察样品形貌,X射线衍射仪(XRD)及透射电子显微镜(TEM)分析合成样品的具体结构,利用充放电循环测试系统测试其电化学性能。结果表明,产物为二次粒子团聚而成近似球形颗粒;合成的样品具有典型的层状α-NaFeO_2结构。在电压范围为2.8~4.3 V,1 C倍率条件下,首次充放电容量分别为206和176 mAh·g~(-1),100次循环后库伦效率达到了85%。
        Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2 as a precursor of lithium-ion battery ternary cathode material was prepared in batches by a hydroxyl co-precipitation method in the system of CSTR(continuous stirred tank reactor). Then, Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2 was roasted with Li_2CO_3 to obtain Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2 at a high temperature in the air. Scanning electron microscope(SEM), X-ray diffraction(XRD) and transmission electron microscope(TEM) were used to examine the morphology and structure of the obtained Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2. The resulting Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2 powders have a type of spherical structure composed of secondary particles with a typical α-NaFeO_2 lamellar structure. The electrochemical tests indicate that this cathode material has a good electrochemical reversibility and better cycle stability in the voltage range of 2.8~4.3 V. Its initial charge and discharge specific capacity is as high as 206 and 176 mAh·g~(-1) at 1 C,respectively, and the coulombic efficiency exceeds 85% after 100 cycles.
引文
[1]Wu F,Wang H,Bai Y et al.Solid State Ionics[J],2017,300:149
    [2]Liu Z L,Yu A S,Lee J Y.Journal of Power Sources[J],1999,81:416
    [3]Nayak P K,Grinblat J,Levi M et al.Materials Science and Engineering B[J],2016,213:131
    [4]Liang Y G,Han X Y,Zhou X W et al.Electrochemistry Communications[J],2007,9:965
    [5]Deng C,Liu L,Zhou W et al.Electrochimica Acta[J],2008,53:2441
    [6]Li L J,Li X H,Wang Z X et al.Powder Technology[J],2011,206:353
    [7]Yang S Y,Wang X Y,Liu Z L et al.Transactions of Nonferrous Metals Society of China[J],2011,21(9):1995
    [8]Zhang S,Deng C,Fu B L et al.Powder Technology[J],2010,198:373
    [9]Wang D P,Belharouak I,Koenig G M et al.Journal of Materials Chemistry[J],2011,21:9290
    [10]Liu L,Lu C,Xiang M W et al.Chem Electro Chem[J],2017,4:332
    [11]Bréger J,Jiang M,DupréN et al.Journal of Solid State Chemistry[J],2005,178:2575
    [12]Shaju K M,Subba R G V,Chowdari B V R.Electrochimica Acta[J],2002,48:145
    [13]Li J,Kl?psch R,Stan M C et al.Journal of Power Sources[J],2011,196:4821
    [14]Cheng K L,Mu D B,Wu B R et al.International Journal of Minerals,Metallurgy and Materials[J],2017,24:342
    [15]He L P,Sun S Y,Song X F et al.Waste Management[J],2017,64:171
    [16]Zhao X,Hayner C M,Kung M C et al.ACS Nano[J],2011,5(11):8739
    [17]Wu Z S,Ren W C,Xu L et al.ACS Nano[J],2011,5(7):5463
    [18]Wang H B,Zhang C J,Liu Z H et al.Journal of Materials Chemistry[J],2011,21(14):5430
    [19]Li L J,Li X H,Wang Z X et al.Journal of Alloys and Compounds[J],2010,507:172