水下安全监测无线磁感应通信3D路径损耗
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wireless magnetic-induction communication 3D path loss for underwater safety monitoring
  • 作者:孙彦景 ; 潘东跃 ; 徐华 ; 施文娟 ; 任青妍
  • 英文作者:SUN Yanjing;PAN Dongyue;XU Hua;SHI Wenjuan;REN Qingyan;School of Information and Control Engineering, China University of Mining and Technology;School of Communication and Information Engineering,Xi'an University of Science and Technology;School of New Energy and Electronic Engineering, Yancheng Teachers University;
  • 关键词:无线水下监测网络 ; 无线磁感应通信 ; 路径损耗 ; 全向天线
  • 英文关键词:underwater wireless monitoring networks;;wireless magnetic-induction communication;;path loss;;omnidirectional antenna
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:中国矿业大学信息与控制工程学院;西安科技大学通信与信息工程学院;盐城师范学院新能源与电子工程学院;
  • 出版日期:2018-11-28 09:24
  • 出版单位:中国矿业大学学报
  • 年:2019
  • 期:v.48;No.228
  • 基金:国家自然科学基金项目(61771417,51504214)
  • 语种:中文;
  • 页:ZGKD201903015
  • 页数:8
  • CN:03
  • ISSN:32-1152/TD
  • 分类号:153-160
摘要
为有效避免声信号在浅海水域受海底海面多次反射的影响,针对水下安全监测网络节点方向、位置变化的特点,以无线磁感应通信技术为通信手段,在对单向无线磁感应通信模型分析的基础上,提出了一种全向水下无线磁感应通信模型.研究结果表明:在单向无线磁感应通信模型下,接收天线法向量方向角度γ为0.5π与1.5π时,收发天线之间耦合作用消失,导致收发端无法保持正常通信.在海水环境中,由于涡流效应造成无线磁感应通信的额外损耗分别与信号频率和海水盐度的平方根成正比关系,当天线线圈半径为0.5 m,匝数为100时通信距离仅为20.0 m;在淡水环境下采用全向无线磁感应通信模型,当接收天线位置和方向变化时,其路径损耗在60~67 dB的范围内变化,能够有效解决单向通信模型中由于天线方向、位置的变化造成的通信中断问题,提高通信的可靠性,为水下安全监测网络的应用提供参考.
        To avoid the multiple reflections of safety acoustic signals between seabed and surface effectively, wireless magnetic-induction communication technology was used as the communication mean. For the changes of the orientations and positions of the nodes in underwater safety monitoring networks, a model of omnidirectional wireless magnetic induction communication was proposed based on the studies of the unidirectional wireless magnetic induction communication. The results show that in the model of unidirectional wireless magnetic induction communication, the transmitter is not able to communicate with the receiver when the angle of the receiving antenna's normal vector is equal to 0.5π and 1.5π, because the coupling between the transmitting and receiving antennas disappears. The extra loss caused by the eddy current effects is proportional to the square root of the seawater salinity and the signal frequency separately, as a result, the communication range is only 20.0 m when the radius of antenna coil with 100 turns is 0.5 m. The path loss of omnidirectional wireless magnetic induction communication model varies from 60 to 67 dB during the process of the changing of the receiving antenna's position and orientation in fresh water environment, which can effectively solve the communication interruption caused by changes of unidirectional antenna's position and orientation, and provide reference for the application of underwater safety monitoring networks.
引文
[1] AKYILDIZ I F,POMPILI D,MELODIA T.Underwater acoustic sensor networks:research challenges[J].Ad Hoc Networks,2005,3(3):257-279.
    [2] 王星星,王英民,高胜美,等.深水重力流模拟研究进展及对海洋油气开发的启示[J].中国矿业大学学报,2018,47(3):588-602.WANG Xingxing,WANG Yingmin,GAO Shengmei,et al.Advancements of deep-water gravity flow simulations and their implications for exploitation of marine petroleum[J].Journal of China University of Mining & Technology,2018,47(3):588-602.
    [3] ZENG Z,FU S,ZHANG H,et al.A survey of underwater optical wireless communications[J].IEEE Communications Surveys & Tutorials,2017,19(1):204-238.
    [4] MIRAMIRKHANI F,UYSAL M.Visible light communication channel modeling for underwater environments with blocking and shadowing[J].IEEE Access,2018,6:1082-1090.
    [5] DOMINGO M C.Overview of channel models for under-water wireless communication networks[J].Physical Communication,2008,1(3):163-182.
    [6] SUN Z,AKYILDIZ I F.Magnetic induction communications for wireless underground sensor networks[J].IEEE Transactions on Antennas & Propagation,2010,58(7):2426-2435.
    [7] SHARMA A K,YADAV S,DANDUS N,et al.Magnetic induction-based non-conventional media communications:a review[J].IEEE Sensors Journal,2017,17(4):926-940.
    [8] 孙彦景,徐胜,施文娟,等.无线地下磁感应通信系统研究与实现[J].传感技术学报,2017,30(6):904-908.SUN Yanjing,XU Sheng,SHI Wenjuan,et al.Analysis and implementation of magnetic induction wireless underground communication system[J].Chinese Journal of Sensors and Actuators,2017,30(6):904-908.
    [9] 施文娟,孙彦景,李松,等.挑战环境下无线磁感应传感网理论与关键技术[J].工矿自动化,2016,42(6):20-25.SHI Wenjuan,SUN Yanjing,LI Song,et al.Theory and key technologies for wireless magnetic induction sensor network in challenging environment[J].Industry & Mine Automation,2016,42(6):20-25.
    [10] AKYILDIZ I F,WANG P,SUN Z.Realizing underwater communication through magnetic induction[J].Communications Magazine IEEE,2015,53(11):42-48.
    [11] GUO H,SUN Z,WANG P.Multiple frequency band channel modeling and analysis for magnetic induction communication in practical underwater environments[J].IEEE Transactions on Vehicular Technology,2017,66(8):6619-6632.
    [12] GUO H,SUN Z,WANG P.Channel modeling of MI underwater communication using tri-directional coil antenna[C] // IEEE Global Communications Conference.San Diego:IEEE Press,2015:1-6.
    [13] DOMINGOM C.Magnetic induction for underwater wireless communication networks[J].IEEE Transactions on Antennas & Propagation,2012,60(6):2929-2939.
    [14] SUN Z,AKYILDIZ I F.Underground wireless communication using magnetic induction[C]//IEEE International Conference on Communications.Dresden:IEEE Press,2009:4234-4238.
    [15] 谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,2006:45-49.XIE Chufang,RAO Kejin.Electromagnetic field and electromagnetic wave[M].Beijing:Higher Education Press,2006:45-49.
    [16] 同济大学数学系.工程数学:线性代数[M].北京:高等教育出版社,2014:114-119.Department of Mathematics,Tongji University.Engineering mathematics:linear algebra[M].Beijing:Higher Education Press,2014:114-119.
    [17] 陈华秋,罗续业.由海水盐度计算海水电导率比的计算方法[J].海洋技术学报,1987(2):84-89.CHEN Huaqiu,LUO Xuye.Calculation method of seawater conductivity ratio from seawater salinity[J].Journal of Ocean Technology,1987(2):84-89.
    [18] 胡光正.盐度35‰海水电导率新值[J].海洋技术学报,1980(1):57-60.HU Guangzheng.New conductivity of seawater with 35‰ salinity[J].Journal of Ocean Technology,1980(1):57-60.