基于有限元分析的间隙检测线圈间距优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on optimization of space between gap detection coils based on finite element analysis
  • 作者:廖珍贞 ; 靖永志 ; 张晨昊 ; 彭涛
  • 英文作者:LIAO Zhenzhen;JING Yongzhi;ZHANG Chenhao;PENG Tao;Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle,Ministry of Education;School of Electrical Engineering,Southwest Jiaotong University;
  • 关键词:磁浮列车 ; 间隙传感器 ; 轨道缝隙 ; 有限元分析
  • 英文关键词:maglev train;;gap sensor;;track seam;;finite element analysis
  • 中文刊名:CGQJ
  • 英文刊名:Transducer and Microsystem Technologies
  • 机构:磁浮技术与磁浮列车教育部重点实验室;西南交通大学电气工程学院;
  • 出版日期:2019-08-09
  • 出版单位:传感器与微系统
  • 年:2019
  • 期:v.38;No.330
  • 基金:国家自然科学基金资助项目(51577160)
  • 语种:中文;
  • 页:CGQJ201908010
  • 页数:4
  • CN:08
  • ISSN:23-1537/TN
  • 分类号:39-41+44
摘要
针对中低速磁浮列车间隙传感器通过轨道缝隙时悬浮间隙值测量存在较大误差的问题,采用有限元分析的方法对间隙传感器内的检测线圈间距进行优化。利用ANSYS软件建立双线圈过40 mm轨道缝隙的三维仿真模型,对间隙传感器在不同线圈间距下进行垂向检测特性和额定悬浮间隙时横向过轨道缝隙的检测特性进行仿真。得到了不同线圈间距下的误差分布曲线,仿真结果表明:检测线圈间距为87 mm是满足误差要求的最小线圈间距,为最优的线圈间距。
        Aiming at the problem that there is a large error in measurement of levitation gap value when the sensor of the medium-low speed maglev train passes through the track seam,finite element analysis method is introduced to optimize the space between two detection coils of the gap sensor. A three-dimensional simulation model of dualcoil with 40 mm track seam is established by ANSYS software. Vertical detection characteristics of the gap sensor under different space between coils are simulated,and the detection characteristics of the transverse over track seam with rated elevation gap are simulated too. The error distribution curves are obtained for different space between coils. The simulation results show that the space between coils of 87 mm is the minimum to meet the error requirement,and it is the optimal space between coils.
引文
[1]林一平.我国磁浮列车研制取得重大进展[J].交通与运输,2017,33(3):50-53.
    [2]王明义,曹继伟,张成明,等.单自由度磁悬浮系统电流控制[J].电工技术学报,2015,30(14):25-31.
    [3]崔亦博,焦怡博,孙旺,等.基于多传感器综合的中低速磁浮列车测速定位系统[J].铁道通信信号,2017,53(3):74-78.
    [4]李红伟,刘淑琴,于文涛,等.电涡流传感器检测磁悬浮转子轴向位移的方法[J].仪器仪表学报,2011,32(7):1441-1448.
    [5]张卫民,岳明明,庞炜涵,等.涡流阵列检测技术的研究进展现状分析[J].机械制造与自动化,2018,47(1):181-183.
    [6]黄刘平,田新启.电涡流传感器线圈等效阻抗的计算与实验分析[J].化工自动化及仪表,2017,44(1):39-43.
    [7] JHA A K,KEDOUS-Lebouc A,GARBUIO L,et al. FEA-based analysis on effect of slot pole combination on motor torque and magnet eddy current loss with bonded Nd Fe B Halbach rotor[C]∥2017 the 20th International Conference on Electrical Machines and Systems(ICEMS),Sydney,2017:1-5.
    [8]肖俊生,杜志杰,王志春.基于ANSYS的电涡流测厚仿真分析[J].传感器与微系统,2018,37(3):28-31.
    [9]黄云龙,谢振宇,张浩,等.电涡流传感器探头线圈的参数化设计与制造[J].机械与电子,2017,35(3):37-41,46.
    [10]郑水华,于磊,王艳丽.基于有限元法的电涡流传感器探头线圈设计[J].水电自动化与大坝监测,2014,38(2):28-31.