挂载飞行温度边界下固体发动机药柱结构响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural analysis of SRM grains under mounted flight temperature boundary conditions
  • 作者:程吉明 ; 李进贤 ; 冯喜平 ; 朱国强
  • 英文作者:CHENG Jiming;LI Jinxian;FENG Xiping;ZHU Guoqiang;Science and Technology on Combustion,Internal Flow and Thermal-structure Laboratory,Northwestern Polytechnical University;
  • 关键词:固体发动机 ; 推进剂 ; 挂载飞行 ; 结构响应 ; 累积损伤
  • 英文关键词:Solid rocket motor;;propellant;;mounted flight;;structural response;;cumulative damage
  • 中文刊名:GTHJ
  • 英文刊名:Journal of Solid Rocket Technology
  • 机构:西北工业大学燃烧热结构与内流场重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:固体火箭技术
  • 年:2019
  • 期:v.42;No.192
  • 语种:中文;
  • 页:GTHJ201903014
  • 页数:6
  • CN:03
  • ISSN:61-1176/V
  • 分类号:87-91+100
摘要
为了研究机载导弹发动机在挂载飞行温度边界条件下药柱的结构响应特性,针对六角星形装药发动机建立了有限元分析模型,采用线粘弹性本构模型描述固体推进剂的力学响应,计算分析了不同挂载飞行高度和飞行速度条件下发动机药柱的结构响应特性,并结合渐近损伤模型分析了发动机在多次挂载飞行条件下药柱的损伤特性。结果表明,药柱最大等效应变随飞行高度的增大而增大,而挂载飞行速度对药柱结构响应影响相对较小。随挂载飞行次数的增加,药柱产生累积损伤,且损伤值随单次挂载飞行时间和飞行次数的增加而逐渐增大。
        In this paper,the structural response of airborne missiles grain under mounted flight conditions has been analyzed.A finite element analysis model has been established for the star grain of SRM.The structural response of propellant grain under different flight altitudes and flight speeds has been investigated.In addition,the damage characteristics of the propellant grain under multiple mounted flight conditions have been analyzed in combination with the cumulative damage model. The results show that the maximum equivalent strain and stress of the propellant grain increases with the increase of flight altitude. Meantime,the structure response of propellant grain is less dependent on the flight speed.The cumulative damage in the propellant grain would occur during flights,and the damage accumulates gradually with the increase of the mount flight time and the number of flights.
引文
[1]赖建伟,常新龙,龙兵,等.HTPB推进剂的低温力学性能[J].火炸药学报,2012,35(3):80-83.LAI Jianwei,CHANG Xinlong,LONG Bin,et al.Low temperature mechanical properties of HTPB propellant[J].Chinese Journal of Explosives and Propellants,2012,35(3):80-83.
    [2]Chen X,Lai J,Chang X L,et al.Compressive mechanical properties of HTPB propellant at low temperatures and high strain rates[J].Results in Physics,2017(7):4079-4084.
    [3]王哲君,强洪夫,王广,等.低温高应变率条件下HTPB推进剂拉伸力学性能研究[J].推进技术,2015,36(9):1426-1432.WANG Zhejun,QIAN Hongfu,WANG Guang,et al.Tensile mechanical properties of HTPB propellant at low temperature and high strain rate[J].Journal of Propulsion Technology,2015,36(9):1426-1432.
    [4]王玉峰,张勇,曲凯,等.HTPB推进剂药柱在变温环境下的累积损伤分析[J].弹箭与制导学报,2011,30(6):136-139.WANG Yufeng,ZHANG Yong,QU Kai,et al.Analysis of cumulative damage of HTPB propellant grain under temperature changing condition[J].Journal of Projectiles,Rockets,Missiles and Guidance,2011,30(6):136-139.
    [5]邓斌,杨东,段静波,等.温度载荷下的药柱累积损伤分析[J].推进技术,2013,34(2):280-284.DENG Bin,YANG Dong,DUAN Jingbo,et al.Cumulative damage analysis of solid rocket motor grain under temperature loading[J].Journal of Propulsion Technology,2013,34(2):280-284.
    [6]Duncan E J S,Margetson J.A nonlinear viscoelastic theory for solid rocket propellants based on a cumulative damage approach[J].Propellants Explosives Pyrotechnics,1998,23(2):94-104.
    [7]Chyuan S W.A study of loading history effect for thermoviscoelastic solid propellant grains[J].Computers and Structures,2000,77(6):735-745.
    [8]Kunz R.Continuum damage mechanics modeling of solid propellant[R].AIAA 2008-4973.
    [9]孟红磊,赵秀超,鞠玉涛,等.基于累积损伤的双基推进剂强度准则及实验[J].推进技术,2011,32(1):109-112.MENG Honglei,ZHAO Xiuchao,JU Yutao,et al.Strength criterion based on accumulative damage for double-base propellant and experiment[J].Journal of Propulsion Technology,2011,32(1):109-112.
    [10]邢耀国,董可海,沈伟,等.固体火箭发动机使用工程[M].北京:国防工业出版社,2010.XING Yaoguo,DONG Kehai,SHEN Wei,et al.Application engineering of solid rocket motor[M].Beijing:National Defense Industry Press,2010.
    [11]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.YANG Shiming TAO Wenquan.Heat transfer[M].Beijing:Higher Education Press,2006.
    [12]杨炳尉.标准大气参数的公式表示[J].宇航学报,1983,4(1):86-89.YANG Bingwei.Formulization of standard atmospheric parameters[J].Journal of Astronautics,1983,4(1):86-89.
    [13]李延伟.高空无人机载光学遥感器热控技术研究[D].中国科学院大学,2013.LI Yanwei.Research on thermal control technology of altitude optical sensor mounted on unmanned aerial vehicle[D].Beijing:Chinese Academy of Science,2013.
    [14]U S Standard Atmosphere,1976[R].National Oceanic and Atmospheric Administration;National Aeronautics and Space Administration;Untied States Air Force,Washington,D.C.October 1976.