钴/铁双金属有机框架材料用于电催化析氧反应(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cobalt/iron bimetal-organic frameworks as efficient electrocatalysts for the oxygen evolution reaction
  • 作者:谢士礼 ; 李斐 ; 许素显 ; 李佳原 ; 曾伟
  • 英文作者:Shili Xie;Fei Li;Suxian Xu;Jiayuan Li;Wei Zeng;State Key Laboratory of Fine Chemicals, Dalian University of Technology;Dalian Wondersun Biochemical Technology Co., LTD;
  • 关键词:双金属有机框架材料 ; 析氧反应 ; 催化剂 ; 协同效应 ; 超声法
  • 英文关键词:Bimetal-organic frameworks;;Oxygen evolution reaction;;Electrocatalysts;;Synergetic effect;;Ultrasonic method
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:大连理工大学精细化工国家重点实验室;大连韦德生化科技有限公司;
  • 出版日期:2019-06-24
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(21872016);; the Fundamental Research Funds for the Central Universities(DUT17ZD204)~~
  • 语种:英文;
  • 页:CHUA201908013
  • 页数:10
  • CN:08
  • ISSN:21-1601/O6
  • 分类号:136-145
摘要
开发高效且稳定的电催化剂用于水氧化反应对于能源存储与转化系统至关重要.目前商业贵金属材料(如IrO_2和RuO_2)拥有最好的电催化析氧性能,但其稀缺性和高成本阻碍了它们的实际应用.金属有机框架材料(MOFs)由于具有比表面积大、周期性结构、孔径可调、金属中心和有机配体多样性等特点,已经广泛应用于药物输送、气体存储、催化、传感等领域.在电催化领域,MOFs通常作为前驱体或模板在高温下热解来制备金属氧化物/多孔碳复合材料,虽然它们显示出较高的催化活性,但是往往需要复杂的制备工艺和高温条件.因此,利用MOFs的固有活性不经过热解处理直接使用MOFs作为析氧反应(OER)电催化剂是非常有意义的.由于氧化态的钴中心有利于OOH物种的形成并可促进OOH脱质子形成氧气,钴基材料已经显示出很好的OER性能.尤其是当Fe掺杂进钴基催化剂时,OER性能可得到进一步提高.因此,开发一种高效的Co/Fe双金属MOFs用于电催化析氧反应是很好的选择.本文以Co~(2+)和Fe~(3+)为金属离子,以均苯三甲酸为有机配体,在三乙胺存在条件下通过简单的超声法合成了一系列不同Co/Fe比的双金属MOFs.以电催化性能最好的Co_2Fe-MOF为研究对象,从扫描电子显微镜和透射电子显微镜图可以看出Co_2Fe-MOF由松散堆积的纳米粒子组成,这种结构具有较大的比表面积,从而可以暴露更多的催化活性位点.电化学测试结果表明,在所有的CoxFe-MOFs中,Co_2Fe-MOF达到10 mA cm~(-2)的电流密度需要的过电位(280 mV)最低,且低于大部分文献报道的钴/铁双金属催化剂.而且Co_2Fe-MOF的Tafel斜率低至44.7 mV dec~(-1),表明在电催化过程中有较快的反应动力学.电化学阻抗分析表明,Co_2Fe-MOF有较小的电荷转移电阻,有利于电子从电解液到电极表面的传递.XPS测试分析表明,Fe的加入可以调节Co金属中心周围的电子环境,有利于提升催化剂的电催化性能.总之,Co_2Fe-MOF优良的电催化性能可归因于其具有较大的比表面积、较高的电子传输速率以及Co和Fe金属中心的协同效应.本研究为直接利用MOFs材料作为低成本析氧反应电催化剂提供了新策略.
        The development of high efficiency and stable electrocatalysts for oxygen evolution is critical for energy storage and conversion systems. Herein, a series of Co/Fe bimetal-organic frameworks(MOFs) were fabricated using a facile ultrasonic method at room temperature, as electrocatalysts for the oxygen evolution reaction(OER) in alkaline solution. The Co_2 Fe-MOF exhibited an overpotential of 280 mV at a current density of 10 mA cm~(-2), a low Tafel slope of 44.7 mV dec~(-1), and long-term stability over 12000 s in 1 mol L~(-1) KOH. This impressive performance was attributed to the high charge transfer rate, large specific surface area, and synergistic effects of the cobalt and iron centers.
引文
[1]X.Q.Du,Z.Yang,Y.Li,Y.Q.Gong,M.Zhao,J.Mater.Chem.A,2018,6,6938-6946.
    [2]P.W.Menezes,C.Panda,S.Loos,F.Bunschei-Bruns,C.Walter,M.Schwarze,X.H.Deng,H.Dau,M.Driess,Energy Environ.Sci.,2018,11,1287-1298.
    [3]Y.Gou,Q.Liu,X.F.Shi,A.M.Asiri,J.M.Hu,X.P.Sun,Chem.Commun.,2018,54,5066-5069.
    [4]Y.N.Guo,J.Tang,Z.L.Wang,Y.M.Kang,Y.Bando,Y.Yamauchi,Nano Energy,2018,47,494-502.
    [5]B.Zhang,X.L.Zhang,O.Voznyy,R.Comin,M.Bajdich,M.G.Melchor,L.L.Han,J.X.Xu,M.Liu,L.R.Zheng,F.G.Arquer,C.T.Dinh,F.J.Fan,M.J.Yuan,E.Yassitepe,N.Chen,T.Regier,P.F.Liu,Y.H.Li,P.Luna,A.Janmohamed,H.L.Xin,H.G.Yang,A.Vojvodic,E.H.Sargent,Science,2016,352,333-337.
    [6]H.B.Yang,J.W.Miao,S.F.Hung,J.Z.Chen,H.B.Tao,X.Z.Wang,L.P.Zhang,R.Chen,J.J.Gao,H.M.Chen,L.M.Dai,B.Liu,Sci.Adv.,2016,2,e1501122.
    [7]Q.Qin,H.Jang,L.L.Chen,G.Nam,X.E.Liu,J.Cho,Adv.Energy Mater.,2018,8,1801478.
    [8]K.Xiao,L.Zhou,M.Shao,M.Wei,J.Mater.Chem.A,2018,6,7585-7591.
    [9]C.J.Xuan,J.Wang,W.W.Xia,J.Zhu,Z.K.Peng,K.D.Xia,W.P.Xiao,H.L.Xin,D.Wang,J.Mater.Chem.A,2018,6,7062-7069.
    [10]Z.Li,W.H.Niu,L.Zhou,Y.Yang,ACS Energy Lett.,2018,3,892-898.
    [11]D.Wu,Y.C.Wei,X.Ren,X.Q.Ji,Y.W.Liu,X.D.Guo,Z.A.Liu,A.M.Asiri,Q.Wei,X.P.Sun,Adv Mater.,2018,30,1705366.
    [12]Q.He,H.Xie,Z.U.Rehman,C.D.Wang,P.Wan,H.L.Jiang,W.S.Chu,L.Song,ACS Energy Lett.,2018,3,861-868.
    [13]C.Guan,H.J.Wu,W.Xiao,X.M.Liu,W.J.Zang,H.Zhang,J.Ding,Y.P.Feng,S.J.Pennycook,J.Wang,Nano Energy,2018,48,73-80.
    [14]B.W.Zhang,Y.H.Lui,A.P.S.Gaur,B.L.Chen,X.H.Tang,Z.Y.Qi,S.Hu,ACS Appl.Mater.Interfaces,2018,10,8739-8748.
    [15]Q.Qin,H.Jang,P.Li,B.Yuan,X.E.Liu,J.Cho,Adv.Energy Mater.,2018,9,1803312.
    [16]P.Z.Chen,K.Xu,Z.W.Fang,Y.Tong,J.C.Wu,X.L.Lu,X.Peng,H.Ding,C.Z.Wu,Y.Xie,Angew.Chem.Int.Ed.,2015,54,14710-14714.
    [17]B.Q.Li,S.Y.Zhang,C.Tang,X.Y.Cui,Q.Zhang,Small,2017,13,1700610.
    [18]Y.X.Li,J.Yin,L.An,M.Lu,K.Sun,Y.Q.Zhao,F.Y.Cheng,P.X.Xi,Nanoscale,2018,10,6581-6588.
    [19]J.W.Li,Q.N.Zhuang,P.M.Xu,D.W.Zhang,L.C.Wei,D.S.Yuan,Chin.J.Catal.,2018,39,1403-1410.
    [20]J.Jin,J.Yin,H.W.Liu,P.X.Xi,Chin.J.Catal.,2019,40,43-51.
    [21]Y.S.Du,G.Z.Cheng,W.Luo,Nanoscale,2017,9,6821-6825.
    [22]C.Xia,Q.Jiang,C.Zhao,M.N.Hedhili,H.N.Alshareef,Adv.Mater.,2016,28,77-85.
    [23]G.L.Chai,K.P.Qiu,M.Qiao,M.M.Titirici,C.X.Shang,Z.X.Guo,Energy Environ.Sci.,2017,10,1186-1195.
    [24]B.S.Yeo,A.T.Bell,J.Am.Chem.Soc.,2011,133,5587-5593.
    [25]K.W.Liu,C.L.Zhang,Y.D.Sun,G.H.Zhang,X.C.Shen,F.Zou,H.C.Zhang,Z.W.Wu,E.C.Wegener,C.J.Taubert,J.T.Miller,Z.M.Peng,Y.Zhu,ACS Nano,2018,12,158-167.
    [26]X.F.Lu,L.F.Gu,J.W.Wang,J.X.Wu,P.Q.Liao,G.R.Li,Adv.Mater.,2017,29,1604437.
    [27]P.Pei,Z.F.Tian,Y.F.Zhu,Microporous Mesoporous Mater.,2018,272,24-30.
    [28]L.K.Meng,K.Liu,S.Fu,L.Wang,C.Liang,G.H.Li,C.G.Li,Z.Shi,J.Solid State Chem.,2018,265,285-290.
    [29]J.N.Joshi,G.H.Zhu,J.J.Lee,E.A.Carter,C.W.Jones,R.P.Lively,K.S.Walton,Langmuir,2018,34,8443-8450.
    [30]R.Yan,Y.Zhao,H.Yang,X.J.Kang,C.Wang,L.L.Wen,Z.D.Lu,Adv.Funct.Mater.,2018,28,1802021.
    [31]M.Sohail,M.Altaf,N.Baig,R.Jamil,M.Sher,A.Fazal,New J.Chem.,2018,42,12486-12491.
    [32]X.Wang,L.Yu,B.Y.Guan,S.Y.Song,X.W.Lou,Adv.Mater.,2018,30,1801211.
    [33]X.L.Wang,H.Xiao,A.Li,Z.Li,S.J.Liu,Q.H.Zhang,Y.Gong,L.R.Zheng,Y.Q.Zhu,C.Chen,D.S.Wang,Q.Peng,L.Gu,X.D.Han,J.Li,Y.D.Li,J.Am.Chem.Soc.,2018,140,15336-15341.
    [34]L.M.Cao,Y.W.Hu,S.F.Tang,A.Lljin,J.W.Wang,Z.M.Zhang,T.B.Lu,Adv.Sci.,2018,5,1800949.
    [35]M.M.Wang,M.T.Lin,J.T.Li,L.Huang,Z.C.Zhuang,C.Lin,L.Zhou,L.Q.Mai,Chem.Commun.,2017,53,8372.
    [36]S.L.Zhao,Y.Wang,J.C.Dong,C.T.He,H.J.Yin,P.F.An,K.Zhao,X.F.Zhang,C.Gao,L.J.Zhang,J.W.Lv,J.X.Wang,J.Q.Zhang,A.M.Khattak,N.A.Khan,Z.X.Wei,J.Zhang,S.Q.Liu,H.J.Zhao,Z.Y.Tang,Nature Energy,2016,1,16184.
    [37]D.A.Yang,H.Y.Cho,J.Kim,S.T.Yang,W.S.Ahn,Energy Environ.Sci.,2012,5,6465-6473.
    [38]X.J.Zheng,X.Y.Song,X.M.Wang,Z.H.Zhang,Z.M.Sun,Y.S.Guo,New J.Chem.,2018,42,8346-8350.
    [39]F.Z.Sun,G.Wang,Y.Q.Ding,C.Wang,B.B.Yuan,Y.Q.Lin,Adv.Energy Mater.,2018,8,1800584.
    [40]X.P.Dai,M.Z.Liu,Z.Z.Li,A.X.Jin,Y.D.Ma,X.L.Huang,H.Sun,H.Wang,X.Zhang,J.Phys.Chem.C,2016,120,12539-12548.
    [41]P.Guo,J.Wu,X.B.Li,J.Luo,W.M.Lau,H.Liu,X.L.Sun,L.M.Liu,Nano Energy,2018,47,96-104.
    [42]H.Wang,F.X.Yin,G.R.Li,B.H.Chen,Z.Q.Wang,Int.J.Hydrogen Energy,2014,39,16179-16186.
    [43]S.H.Liu,Z.Y.Wang,S.Zhou,F.J.Yu,M.Z.Yu,C.Y.Chiang,W.Z.Zhou,J.J.Zhao,J.S.Qiu,Adv.Mater.,2017,29,1700874.
    [44]J.Zhou,Y.B.Dou,A.W.Zhou,R.M.Guo,M.J.Zhao,J.R.Li,Adv.Energy Mater.,2017,7,1602643.