脱盐味精尾液对Na_2CO_3胁迫下小白菜种子萌发和幼苗生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of desalinated wastewater containing monosodium glutamate on germination and growth of pakchoi under Na_2CO_3 stress
  • 作者:许猛 ; 袁亮 ; 李伟 ; 李燕婷 ; 赵秉强
  • 英文作者:XU Meng;YUAN Liang;LI Wei;LI Yan-ting;ZHAO Bing-qiang;Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture;College of Environmental and Resource Sciences, Zhejiang University;
  • 关键词:氨基酸 ; 脱盐味精尾液 ; Na2CO3胁迫 ; 小白菜 ; 种子萌发 ; 幼苗生长
  • 英文关键词:amino acids;;desalinated monosodium glutamate wastewater;;Na2CO3 stress;;pakchoi(Brassica chinensis L.);;seed germination;;seedling growth
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:中国农业科学院农业资源与农业区划研究所/农业部植物营养与肥料重点实验室;浙江大学环境与资源学院;
  • 出版日期:2019-06-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.129
  • 基金:国家重点研发计划项目(2016YFD0200402)
  • 语种:中文;
  • 页:ZWYF201906015
  • 页数:10
  • CN:06
  • ISSN:11-3996/S
  • 分类号:138-147
摘要
【目的】外源氨基酸能够缓解氯化钠对作物的胁迫,但其能否缓解毒害作用更大的碱性盐(Na_2CO_3)胁迫尚无定论。本文研究了富含多种氨基酸的脱盐味精尾液制剂(以下简称尾液)对Na_2CO_3胁迫下小白菜种子萌发、幼苗生长和生理指标的影响,旨在为该类制剂在农业生产中,特别是盐碱土地区的推广应用提供科学依据和理论指导。【方法】供试脱盐味精尾液粗蛋白含量为47.62%,游离氨基酸以谷氨酸、丙氨酸、天门冬氨酸、脯氨酸、甘氨酸、亮氨酸、色氨酸等为主,总含量为15.4%,Na+含量1.2%,pH 3.9 (固水比为1∶250)。以小白菜(Brassica chinensis L.)种子和幼苗为供试材料,分别进行萌发试验和幼苗培养试验。种子萌发采用标准发芽试验方法,种子在0、0.05、0.1、0.2、0.4、0.8 g/L尾液中浸种12 h后,分别移至含5 mL 0、10、20、30mmol/L Na_2CO_3溶液的培养皿中萌发,测定其发芽势、发芽率、胚根长和胚芽长。幼苗培养试验选取整齐一致的幼苗,缓苗后,于营养液中分别加入0、0.05、0.1、0.2、0.4、0.8 g/L的尾液和0、2.5、5、10 mmol/L Na_2CO_3进行培养。在碱害明显后,取样测定生长量、SPAD值、根长、株高以及叶片超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、丙二醛(MDA)含量、超氧阴离子自由基■产生速率、脯氨酸(Pro)含量等生理指标。【结果】1)在同一浓度的Na_2CO_3胁迫下,随尾液浓度的增加,小白菜种子的发芽势、发芽率、胚根长和胚芽长均表现出先上升后下降的变化规律,以添加0.1 g/L尾液的缓解效果最佳。2)在同一浓度Na_2CO_3胁迫下,低浓度尾液(0.05~0.1 g/L)能够提高小白菜幼苗生长量、SPAD值,同时保持Pro含量,提高抗氧化酶活性,降低■产生速率和MDA含量;当尾液浓度增加到0.4 g/L和0.8 g/L时,叶片■产生速率和MDA含量明显上升,同时小白菜生长量、SPAD值、根长和株高均大幅下降,显著抑制了小白菜幼苗的生长。3)在2.5 mmol/L Na_2CO_3条件下,尾液浓度以0.05 g/L效果最好,而在5 mmol/L Na_2CO_3和10mmol/L Na_2CO_3条件下,尾液浓度以0.1 g/L效果最好。【结论】脱盐味精尾液可在一定浓度范围内缓解Na_2CO_3对小白菜种子萌发和幼苗生长的抑制作用。在外源Na_2CO_3浓度为10~30 mmol/L时,用0.1 g/L尾液浸种能够促进种子萌发,缓解Na_2CO_3对小白菜种子萌发的抑制作用;在Na_2CO_3 2.5~10 mmol/L条件下,在营养液中补充0.05~0.1 g/L的尾液能够提高小白菜幼苗叶片抗氧化酶活性,增强叶片光合作用,显著提高幼苗生长量,缓解Na_2CO_3对小白菜生长的抑制作用。
        【Objectives】Exogenous amino acids have been proved of alleviating the stress of NaCl on crops,but not yet about their effects on that of alkaline salt(Na_2CO_3). In this study, we investigated the effects of a preparation made of gourmet powder tail liquid, aiming at providing more support for the recycle of the tail liquid in agriculture, particularly in salt-alkaline soil.【Methods】The tested tail liquid contained total crude protein47.62%,total free amino acid 15.4%, Na+ 1.2% and the pH was 3.9(solid: water ratio of 1∶250). Seed germination experiment showed that seeds of pakchoi were presoaked in solutions containing 0, 0.05, 0.1, 0.2, 0.4,0.8 g/L of tail liquid for 12 h, then they were loaded inside germination dishes containing 5 mL of 0, 10, 20, 30 mmol/L Na_2CO_3 solution. The germination potential, percentage of germination and lengths of radicle and plumules were measured. Hydroponic experiment showed that pakchoi seedlings were cultivated in nutrient solutions containing 0, 0.05, 0.1, 0.2, 0.4, 0.8 g/L of the tail liquid solution, and 0, 2.5, 5, 10 mmol/L of Na_2CO_3,respectively. The fresh weight, SPAD value, root length, shoot height, content of SOD, POD, CAT, ■producing rate,proline and MDA content in pakchoi leaves were measured when Na_2CO_3 stress was observed.【Results】1) Under the same Na_2CO_3 concentration, germination potential, percentage of germination, lengths of radicle and plumule of pakchoi showed a trend of increasing first and then decreasing with the increase of tail liquid concentration.Pakchoi grew best at 0.1 g/L preparation concentration under all the tested Na_2CO_3 stress condition. 2) Under the same Na_2CO_3 concentration, seedling fresh weight, SPAD value, SOD, POD, CAT activities increased, and the ■ producing rate and MDA content decreased within low concentrations of tail liquids(0.05–0.1 g/L). When the concentration of tail liquid was in range of 0.4–0.8 g/L, pakchoi growth was severely inhibited, and fresh weight, SPAD value, root length, shoot height decreased greatly, while ■ producing rate and MDA content in leaves increased. 3) Under 2.5 mmol/L of Na_2CO_3, 0.05 g/L of tail liquid was the best option, while 0.1 g/L of tail liquid was the best concentration under 5 mmol/L and 10 mmol/L of Na_2CO_3 stress conditions.【Conclusions】The desalted tail liquid of gourmet powder could alleviate the inhibitory of Na_2CO_3 stress on seed germination and seedling growth of pakchoi. Within stresses range of Na_2CO_310–30 mmol/L, adding 0.1 g/L of the tail liquid into the hydroponic solution is satisfactory in promoting pakchoi seed germination. Under 2.5–10 mmol/L of Na_2CO_3 stress, addition of 0.05–0.1 g/L tail liquid is effective in improving antioxidant enzyme activity of leaves, reducing cells membrane permeability, enhancing leaf photosynthesis, which is the key of higher resistance to Na_2CO_3 stress and healthy growth of pakchoi.
引文
[1]Rehman H U,Nawaz Q,Basra S M,et al.Seed priming influence on early crop growth,phenological development and yield performance of linola(Linum usitatissimum L.)[J].Journal of Integrative Agriculture,2014,13(5):990-996.
    [2]王佺珍,刘倩,高娅妮,等.植物对盐碱胁迫的响应机制研究进展[J].生态学报,2017,37(16):5565-5577.Wang Q Z,Liu Q,Gao Y N,et al.Review on the mechanisms of the response to salinity-alkalinity stress in plants[J].Acta Ecologica Sinica,2017,37(16):5565-5577.
    [3]Finch-Savage W E.Influence of seed quality on crop establishment,growth,and yield[M].Food Products Press,1994.363-385.
    [4]Parihar P,Singh S,Singh R,et al.Effect of salinity stress on plants and its tolerance strategies:a review[J].Environmental Science&Pollution Research International,2015,22(6):4056-4075.
    [5]Schiop S T,Al H M,Sestras A F,et al.Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies(L.)Karst[J].PLoS One,2015,10(8):980-981.
    [6]Tang C,Adams H,Longnecker N E,et al.A method to identify lupin species tolerant of alkaline soils[J].Australian Journal of Experimental Agriculture,1996,36:595-601.
    [7]Senguttuvel P,Raju N S,Padmavathi G,et al.Identification and quantification of salinity tolerance through salt stress indices and variability studies in rice(Oryza sativa L.)[J].Sabrao Journal of Breeding&Genetics,2016,48(2):172-179.
    [8]Yi Z,Li Z,Hu X H.Exogenous spermidine-induced changes at physiological and biochemical parameters levels in tomato seedling grown in saline-alkaline condition[J].Botanical Studies,2014,55(1):1-8.
    [9]陈清,陈宏坤.水溶性肥料生产与施用[M].北京:中国农业出版社,2015.56-61.Chen Q,Chen H K.Water soluble fertilizer production and application[M].Beijing:China Agricultural Press,2015.56-61.
    [10]赵秉强.传统化肥增效改性提升产品性能与功能[J].植物营养与肥料学报,2016,22(1):1-7.Zhao B Q.Modification of conventional fertilizers for enhanced property and function[J].Journal of Plant Nutrition and Fertilizer,2016,22(1):1-7.
    [11]Colla G,Nardi S,Cardarelli M,et al.Protein hydrolysates as biostimulants in horticulture[J].Scientia Horticulturae,2015,196:28-38.
    [12]Calvo P,Nelson L,Kloepper J W.Agricultural uses of plant biostimulants[J].Plant&Soil,2014,383(10):3-41.
    [13]Ertani A,Schiavon M,Muscolo A,et al.Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L.plants[J].Plant&Soil,2013,364(3):145-158.
    [14]Lucini L,Rouphael Y,Cardarelli M,et al.The effect of a plantderived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions[J].Scientia Horticulturae,2015,182(2):124-133.
    [15]Mostafa G G.Improving the growth of fennel plant grown under salinity stress using some biostimulants[J].American Journal of Plant Physiology,1973,10(2):77-83.
    [16]Gupta U C,Kening W U,Liang S.Micronutrients in soils,crops,and livestock[J].Earth Science Frontiers,2008,15(5):110-125.
    [17]Liu J,Guo W Q,Shi D C.Seed germination,seedling survival,and physiological response of sunflowers under saline and alkaline conditions[J].Photosynthetica,2010,48(2):278-286.
    [18]蔺吉祥,李晓宇,唐佳红,等.盐碱胁迫对小麦种子萌发、早期幼苗生长及Na+、K+代谢的影响[J].麦类作物学报,2011,31(6):1148-1152.Lin J X,Li X Y,Tang J H,et al.Effects of salt and alkali stresses on seed germination,early seedling growth and the metabolize of Na+and K+in shoot of wheat[J].Journal of Triticeae Crops,2011,31(6):1148-1152.
    [19]魏博娴.中国盐碱土的分布与成因分析[J].水土保持应用技术,2012,32(6):27-28.Wei B X.Distribution and genetic analysis of saline-alkali soil in China[J].Application Technology of Soil and Water Conservation,2012,32(6):27-28.
    [20]Sun Y L,Hong S K.Exogenous proline mitigates the detrimental effects of saline and alkaline stresses in Leymus chinensis(Trin.)[J].Journal of Plant Biotechnology,2010,37(4):529-538.
    [21]尤本武,董建江,刘紫薇,等.β-氨基丁酸诱导烟草抗碱初步研究[J].中国烟草学报,2017,23(1):86-94.You B W,Dong J J,Liu Z W,et al.Preliminary study onβ-BABA-induced resistance to alkaline stress in tobacco[J].Acta Tabacaria Sinica,2017,23(1):86-94.
    [22]Sudadi S,Suryono S.Exogenous application of tryptophan and indole acetic acid(IAA)to induce root nodule formation and increase soybean yield in acid,neutral and alkaline soil[J].Agrivita,2015,37(1):37-44.
    [23]张健.氨基酸发酵尾液对水溶肥料的增效作用与机理研究[D].山东泰安:山东农业大学硕士学位论文,2017.Zhang J.Study on synergistic effect and mechanism of amino acid fermentation tail liquid on water soluble fertilizer[D].Tai’an,Shandong:MS Thesis of Shandong Agricultural University,2017.
    [24]李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.Li H S,Sun Q,Zhao S J.The experiment principle and technique on plant physiology and biochemistry[M].Beijing:Higher Education Press,2000.
    [25]刘萍,李明军.植物生理学实验指导[M].北京:科学出版社,2007.Liu P,Li M J.Plant physiology experiment guide[M].Beijing:Science Press,2007.
    [26]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002.Zhao S J,Shi G A,Dong X C.Plant physiology experiment guide[M].Beijing:China Agricultural Science and Technology Press,2002.
    [27]马红媛,梁正伟,黄立华,等.4种多年生禾本科牧草种子萌发对Na2CO3胁迫的响应[J].农业环境科学学报,2009,28(4):766-771.Ma H Y,Liang Z W,Huang L H,et al.Germination characteristics of four perennial grasses(Poaceae)seeds in responses to sodium carbonate stress[J].Journal of Agriculture Environment Science,2009,28(4):766-771.
    [28]Zhang Y,Hu X H,Shi Y,et al.Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline-alkaline stress[J].Journal of the American Society for Horticultural Science,2013,138(1):38-49.
    [29]Hu X,Zhang Y,Shi Y,et al.Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinityalkalinity mixed stress[J].Plant Physiology&Biochemistry,2012,57(8):200-209.
    [30]安华燕.有机碳营养浸种剂的研究[D].合肥:合肥工业大学硕士学位论文,2016.An H Y.The research of the C2-C4 organic acids and alcohols for seed priming[D].Hefei:MS Thesis of Hefei University of Technology,2016.
    [31]Müntz K,Belozersky M A,Dunaevsky Y E,et al.Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth[J].Journal of Experimental Botany,2001,52(20):1741-1752.
    [32]Sheng Y D,Xiao H Y,Guo C L,et al.Effects of exogenous gammaaminobutyric acid onα-amylase activity in the aleurone of barley seeds[J].Plant Physiology&Biochemistry,2018,127(6):39-96.
    [33]Tan L,Chen S,Wang T,et al.Proteomic insights into seed germination in response to environmental factors[J].Proteomics,2013,13(12-13):1850-1870.
    [34]赵艳艳,胡晓辉,邹志荣,等.不同浓度5-氨基乙酰丙酸(ALA)浸种对NaCl胁迫下番茄种子发芽率及芽苗生长的影响[J].生态学报,2013,33(1):62-70.Zhao Y Y,Hu X H,Zou Z R,et al.Effects of seed soaking with different concentrations of 5-aminolevulinic acid on the germination of tomato(Solanum lycopersicum)seeds under NaCl stress[J].Acta Ecologica Sinica,2013,33(1):62-70.
    [35]Ma Q X,Cao X C,Xie Y N,et al.Effect of pH on the uptake and metabolism of glycine in pakchoi(Brassica chinensis L.)[J].Environmental&Experimental Botany,2017,133(2):139-150.
    [36]Pardossi A,Incrocci L,Salas M C,et al.Managing mineral nutrition in soilless culture[A].Orsini F,Dubbeling M,de Zeeuw H,Gianquinto G.Rooftop urban agriculture[M].Springer,2017.325-326.
    [37]马庆旭,吴良欢,曹小闯,等.营养液pH和氮形态对小白菜生长、氮素吸收及品质的影响[J].水土保持学报,2015,29(6):64-68,177.Ma Q X,Wu L H,Cao X C,et al.Effect of pH and nitrogen forms of hydroponic nutrient solution on the growth,nitrogen absorption and edible quality of pakchoi(Brassica chinensis L.)[J].Journal of Soil and Water Conservation,2015,29(6):64-68,177.
    [38]刘卫国,丁俊祥,邹杰,等.NaCl对齿肋赤藓叶肉细胞超微结构的影响[J].生态学报,2016,36(12):3556-3563.Liu W G,Ding J X,Zou J,et al.Ultrastructural responses of Syntrichia caninervis to a gradient of NaCl stress[J].Acta Ecologica Sinica,2016,36(12):3556-3563.
    [39]Kalaji H M,Jajoo A,Oukarroum A,et al.Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J].Acta Physiologiae Plantarum,2016,38(4):102.
    [40]Wang H M,Wang W J,Wang H Z,et al.Effect of inland saltalkaline stress on C4,enzymes,pigments,antioxidant enzymes,and photosynthesis in leaf,bark and branch chlorenchyma of poplars[J].Photosynthetica,2013,51(1):115-126.