三峡库区消落带落羽杉与立柳林土壤微生物生物量碳氮磷动态变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic changes in soil microbial miomass carbon, nitrogen and phosphorus of Taxodium distichum and Salix matsudana plantation in the hydro-fluctuation belt of the Three Gorges Reservoir Region
  • 作者:杨文航 ; 任庆水 ; 李昌晓 ; 宋虹 ; 袁中勋 ; 马文超 ; 崔云风 ; 王朝英
  • 英文作者:YANG Wenhang;REN Qingshui;LI Changxiao;SONG Hong;YUAN Zhongxun;MA Wenchao;CUI Yunfeng;WANG Chaoying;Key Laboratory of Eco-environments in Three Gorges Reservoir Region(Ministry of Education) ,Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region,School of Life Sciences,Southwest University;Chanba Camous Middle School Affiliated to Northwest University;Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education),Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region,School of Life Sciences,Southwest University;Shibao Agricultural Service Center;
  • 关键词:消落带 ; 落羽杉 ; 立柳 ; 微生物生物量碳氮磷
  • 英文关键词:hydro-fluctuation belt;;Salix matsudana;;Taxodium distichum;;soil microbial biomass carbon,nitrogen,phosphorus
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西南大学生命科学学院三峡库区生态环境教育部重点实验室重庆市三峡库区植物生态与资源重点实验室;西北大学附属中学浐灞中学;重庆市忠县石宝镇农业服务中心;
  • 出版日期:2018-12-21 16:40
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:重庆市林业重点科技攻关项目(渝林科研2016-8);; 国家国际科技合作专项(2015DFA90900);; 中央财政林业科技推广示范项目(渝林科推[2014-10]);; 重庆市研究生科研创新项目(CYS2015068)
  • 语种:中文;
  • 页:STXB201905002
  • 页数:11
  • CN:05
  • ISSN:11-2031/Q
  • 分类号:16-26
摘要
为探究库区消落带人工乔木植被恢复重建后土壤质量及肥力的变化特征,于2016年6月(T_1)、2016年9月(T_2)、2017年6月(T_3)及2017年9月(T_4)选择165—175 m高程落羽杉与立柳土壤为研究对象,并以裸地作为对照,测定土壤微生物生物量碳、氮、磷和相关理化性质。结果表明:(1)经历水淹(T_2—T_3)会使土壤微生物生物量处于较低水平,落干期(T_1—T_2、T_3—T_4)落羽杉与立柳人工植被恢复生长能显著提高土壤微生物生物量,对土壤微生物恢复具有重要意义。(2)落羽杉与立柳土壤微生物生物量碳、氮占土壤有机碳、全氮百分比在4个时期均显著高于裸地,表明落羽杉与立柳土壤微生物对土壤碳、氮库的贡献大于裸地;落羽杉土壤微生物生物量磷及其占全磷百分比在T_1和T_3处于极低水平,T_2和T_4处于较高水平,应注意磷元素的迁移。(3)土壤微生物生物量碳、氮、磷与土壤有机碳和全氮有极显著相关性,与土壤pH值呈不同程度的负相关。在三峡库区消落带进行落羽杉与立柳乔木植被恢复重建能显著提高土壤微生物生物量及土壤肥力,进一步证实开展科学的植被修复与重建值得提倡和肯定。
        The operation of the Three Gorges Dam Reservoir(TGDR) on the Yangtze River, China, has formed a hydro-fluctuation belt with an annual water level change of 30 m, spanning an area of 350 km~2. This has led to a decline in plant community within the hydro-fluctuation belt. Revegetation is an eco-friendly method that can be used to restore the ecological integrity of the hydro-fluctuation zone of the TGDR. This method also facilitates the proper maintenance of the functions and services of riparian ecosystem. Therefore, in this study, revegetation of the hydro-fluctuation belt of the Three Gorges Reservoir(TGR) of China was carried out in the Ruxi River basin in Gonghe Village of Shibao Township, Zhong County, Chongqing Municipality of China. The changes in soil fertility and quality were evaluated by assessing the content of soil microbial biomass carbon(SMBC), soil microbial biomass nitrogen(SMBN), and soil microbial biomass phosphorus(SMBP). Soil samples were collected from plots of previously planted T. distichum and S. matsudana woodland in Zhong County of the TGR in June 2016(T_1), September 2016(T_2), June 2017(T_3), and September 2017(T_4) at elevations between 165 and 175 m above sea level. The results showed the following.:(1) Under the conditions of flooding(T_2—T_3), the soil microbial biomass was low. The soil microbial biomass increased significantly after the restorative growth of T. distichum and S. matsudana during the period of drawdown(T_1—T_2 and T_3—T_4), indicating that artificial vegetation restoration has a positive effect on soil microbial recovery.(2) The SMBC/SOC and SMBN/TN of T. distichum and S. matsudana woodland were significantly higher than those of unplanted soil, indicating that the soil turnover rate was faster in the artificial vegetation restoration soil. However, the phosphorus level in the soil of T. distichum varied significantly, which necessitates further evaluation of phosphorus migration within soil.(3) The soil microbial biomass significantly correlated with the soil organic C and total N, but it negatively correlated with the soil pH. Overall, the revegetation of T. distichum and S. matsudana increased soil microbial biomass, and also enhanced the soil quality of the hydro-fluctuation belt. The results of this study further validate artificial revegetation as a suitable method for ecosystem restoration.
引文
[1] 马朋, 李昌晓, 雷明, 杨予静, 马骏. 三峡库区岸坡消落带草地、弃耕地和耕地土壤微生物及酶活性特征. 生态学报, 2014, 34(4): 1010- 1020.
    [2] 樊大勇, 熊高明, 张爱英, 刘曦, 谢宗强, 李兆佳. 三峡库区水位调度对消落带生态修复中物种筛选实践的影响. 植物生态学报, 2015, 39(4): 416- 432.
    [3] 朱妮妮, 郭泉水, 秦爱丽, 裴顺祥, 马凡强, 朱莉, 简尊吉. 三峡水库奉节以东秭归和巫山段消落带植物群落动态特征. 生态学报, 2015, 35(23): 7852- 7867.
    [4] 揭胜麟, 樊大勇, 谢宗强, 张想英, 熊高明. 三峡水库消落带植物叶片光合与营养性状特征. 生态学报, 2012, 32(6): 1723- 1733.
    [5] 滕明君, 曾立雄, 肖文发, 周志翔, 黄志霖, 王鹏程, 佃袁勇. 长江三峡库区生态环境变化遥感研究进展. 应用生态学报, 2014, 25(12): 3683- 3693.
    [6] 胡婵娟, 郭雷. 植被恢复的生态效应研究进展. 生态环境学报, 2012, 21(9): 1640- 1646.
    [7] 张健, 刘国彬. 黄土丘陵区不同植被恢复模式对沟谷地植物群落生物量和物种多样性的影响. 自然资源学报, 2010, 25(2): 207- 217.
    [8] Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry, 2002, 34(9): 1299- 1307.
    [9] 郭泉水, 洪明, 康义, 裴顺祥, 程瑞梅. 消落带适生植物研究进展. 世界林业研究, 2010, 23(4): 14- 20.
    [10] Zhang J X, Liu Z J, Sun X X. Changing landscape in the three gorges reservoir area of Yangtze river from 1977 to 2005: land use/land cover, vegetation cover changes estimated using multi-source satellite data. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(6): 403- 412.
    [11] Mitsch W J, Lu J J, Yuan X Z, He W S, Zhang L. Optimizing ecosystem services in China. Science, 2008, 322(5901): 528.
    [12] 程瑞梅, 肖文发, 王晓荣, 封晓辉, 王瑞丽. 三峡库区植被不同演替阶段的土壤养分特征. 林业科学, 2010, 46(9): 1- 6.
    [13] 李昌晓, 钟章成. 模拟三峡库区消落带土壤水分变化条件下落羽杉幼苗实生土壤营养元素含量的变化. 林业科学, 2008, 44(7): 124- 129.
    [14] 李昌晓, 钟章成. 三峡库区消落带土壤水分变化对落羽杉(Taxodium distichum)幼苗根部次生代谢物质含量及根生物量的影响. 生态学报, 2007, 27(11): 4394- 4402.
    [15] 任庆水, 马朋, 李昌晓, 秦红, 杨予静. 三峡库区消落带两种草本植被土壤细菌群落多样性. 生态学报, 2016, 36(11): 3261- 3272.
    [16] 韩文娇, 白林利, 李昌晓. 水淹胁迫对狗牙根光合、生长及营养元素含量的影响. 草业学报, 2016, 25(5): 49- 59.
    [17] Wang C Y, Li C X, Wei H, Han W J. Effects of long-term periodic submergence on photosynthesis and growth of Taxodium distichum and Taxodium ascendens saplings in the hydro-fluctuation zone of the Three Gorges Reservoir of China. PLoS One, 2016, 11(9): e162867.
    [18] 马文超, 刘媛, 周翠, 王婷, 魏虹. 水位变化对三峡库区消落带落羽杉营养特征的影响. 生态学报, 2017, 37(4): 1128- 1136.
    [19] Makarov M I, Malysheva T I, Maslov M N, Kuznetsova E Y, Menyailo O V. Determination of carbon and nitrogen in microbial biomass of southern-Taiga soils by different methods. Eurasian Soil Science, 2016, 49(6): 685- 695.
    [20] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 1992, 30(2): 195- 207.
    [21] Spohn M, Widdig M. Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability. Soil Biology and Biochemistry, 2017, 113: 53- 59.
    [22] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 30- 109.
    [23] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703- 707.
    [24] Brookes P C, Landman A, Pruden G, Jenkinson D C. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837- 842.
    [25] Brookes P C, Powlson D S, Jenkinson D S. Phosphorus in the soil microbial biomass. Soil Biology and Biochemistry, 1984, 16(2): 169- 175.
    [26] 吴金水, 林启美, 黄巧云, 肖和艾. 土壤微生物生物量测定方法及其应用[M\] . 北京: 气象出版社, 2006: 54- 88.
    [27] Pezeshki S R, DeLaune R D. Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology, 2012, 1(2): 196- 221.
    [28] 任庆水, 马朋, 李昌晓, 杨予静, 马骏. 三峡库区消落带落羽杉(Taxodium distichum)与柳树(Salix matsudana)人工植被对土壤营养元素含量的影响. 生态学报, 2016, 36(20): 6431- 6444.
    [29] Liu B X, Shao M A. Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China. Agricultural Water Management, 2015, 159: 176- 184.
    [30] 刘丽, 段争虎, 汪思龙, 胡江春, 胡治刚, 张倩茹, 王书锦. 不同发育阶段杉木人工林对土壤微生物群落结构的影响. 生态学杂志, 2009, 28(12): 2417- 2423.
    [31] 何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义. 土壤, 1997, 29(2): 61- 69.
    [32] Mureithi S M, Verdoodt A, Gachene C K K, Njoka J T, Wasonga V O, De Neve S, Meyerhoff E, Van Ranst E. Impact of enclosure management on soil properties and microbial biomass in a restored semi-arid rangeland, Kenya. Journal of Arid Land, 2014, 6(5): 561- 570.
    [33] Card S M, Quideau S A. Microbial community structure in restored riparian soils of the Canadian prairie pothole region. Soil Biology and Biochemistry, 2010, 42(9): 1463- 1471.
    [34] Deng Q, Cheng X L, Hui D F, Zhang Q, Li M, Zhang Q F. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Science of the Total Environment, 2016, 541: 230- 237.
    [35] 刘纯, 刘延坤, 金光泽. 小兴安岭6种森林类型土壤微生物量的季节变化特征. 生态学报, 2014, 34(2): 451- 459.
    [36] Ruan H H, Zou X M, Scatena F N, Zimmerman J K. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest. Plant and Soil, 2004, 260(1/2): 147- 154.
    [37] Liu L, Gundersen P, Zhang W, Zhang T, Chen H, Mo J M. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Scientific Reports, 2015, 5: 14378.
    [38] 赵彤, 闫浩, 蒋跃利, 黄懿梅, 安韶山. 黄土丘陵区植被类型对土壤微生物量碳氮磷的影响. 生态学报, 2013, 33(18): 5615- 5622.
    [39] 杨佳佳, 安韶山, 张宏, 陈亚南, 党廷辉, 焦菊英. 黄土丘陵区小流域侵蚀环境对土壤微生物量及酶活性的影响. 生态学报, 2015, 35(17): 5666- 5674.
    [40] Wardle D A. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biology and Biochemistry, 1998, 30(13): 1627- 1637.
    [41] 王芳, 张金水, 高鹏程, 同延安. 不同有机物料培肥对渭北旱塬土壤微生物学特性及土壤肥力的影响. 植物营养与肥料学报, 2011, 17(3): 702- 709.
    [42] 李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 2002, 39(1): 97- 104.
    [43] Moore J M, Klose S, Tabatabai M A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils, 2000, 31(3/4): 200- 210.
    [44] Bailey V L, Smith J L, Bolton H Jr. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry, 2002, 34(7): 997- 1007.
    [45] 贾国梅, 何立, 程虎, 王世彤, 向翰宇, 张雪飞, 席颖. 三峡库区不同植被土壤微生物量碳氮磷生态化学计量特征. 水土保持研究, 2016, 23(4): 23- 27.
    [46] Filep T, Draskovits E, Szabó J, Koós S, László P, Szalai Z. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary. Environmental Monitoring and Assessment, 2015, 187(7): 479.
    [47] Liao M, Xie X M. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety, 2007, 66(2): 217- 223.
    [48] Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 2006, 31(3): 220- 227.
    [49] Speir T W, Cowling J C, Sparling G P, West A W, Corderoy D M. Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low fertility soil under pasture. Soil Biology and Biochemistry, 1986, 18(4): 377- 382.
    [50] Jia G M, Liu X. Soil microbial biomass and metabolic quotient across a gradient of the duration of annually cyclic drainage of hillslope riparian zone in the Three Gorges Reservoir area. Ecological Engineering, 2017, 99: 366- 373.
    [51] Couto G M D, Eisenhauer N, De Oliveira E B, Cesarz S, Feliciano A L P, Marangon L C. Response of soil microbial biomass and activity in early restored lands in the northeastern Brazilian Atlantic Forest. Restoration Ecology, 2016, 24(5): 609- 616.
    [52] 张洋, 倪九派, 周川, 樊芳玲, 谢德体. 三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响. 中国生态农业学报, 2014, 22(7): 766- 773.
    [53] 柴雪思, 雷利国, 江长胜, 黄哲, 范志伟, 郝庆菊. 三峡库区典型消落带土壤微生物生物量碳、氮的变化特征及其影响因素探讨. 环境科学, 2016, 37(8): 2979- 2988.
    [54] Ma Z W, Zhang M X, Xiao R, Cui Y, Yu F H. Changes in soil microbial biomass and community composition in coastal wetlands affected by restoration projects in a Chinese delta. Geoderma, 2017, 289: 124- 134.
    [55] 彭佩钦, 吴金水, 黄道友, 汪汉林, 唐国勇, 黄伟生, 朱奇宏. 洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响. 生态学报, 2006, 26(7): 2261- 2267.