连体超高层建筑风压偏度与峰度分布特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristic Analysis of Wind Pressure's Skewness and Kurtosis for Conjoined Super-tall Building
  • 作者:赵峰 ; 王莹 ; 刘士清 ; 姜天华
  • 英文作者:Zhao Feng;Wang Ying;Liu Shiqing;Jiang Tianhua;Institute of Urban Construction,Wuhan University of Science and Technology;Hubei Institute of Building Research and Design;
  • 关键词:连体结构 ; 超高层建筑 ; 风洞试验 ; 阵风因子 ; 非高斯特性
  • 英文关键词:conjoined structure;;super-tall building;;wind tunnel test;;gust factor;;non-gaussian feature
  • 中文刊名:XTKY
  • 英文刊名:Journal of Hunan University of Science & Technology(Natural Science Edition)
  • 机构:武汉科技大学城市建设学院;湖北省建筑科学研究设计院;
  • 出版日期:2019-07-09 13:47
  • 出版单位:湖南科技大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.121
  • 基金:湖北省自然科学基金资助项目(2015CFB606);; 武汉科技大学青年科技骨干培育计划资助项目(2015xz016)
  • 语种:中文;
  • 页:XTKY201902005
  • 页数:7
  • CN:02
  • ISSN:43-1443/N
  • 分类号:40-46
摘要
在C类地貌中测得某连体超高层建筑的刚性模型风洞试验数据,基于测点风压的第三、四阶矩统计量计算出每个测点对应的偏度参数和峰度参数.计算结果显示:正面迎风时迎风面偏度和峰度的非高斯特性不明显,结构内侧、背面的偏度和峰度则表现出明显的非高斯特性;斜向迎风时,随着风向角的变化风场下游柱体的偏度绝对值和峰度有明显的增大趋势;结构表面有大量测点脉动风压服从强非高斯分布,需对这些测点的阵风因子取值进行专门研究.
        The wind tunnel test data was measured by class C terrain environment in a rigid model of one conjoined super-tall building,and the parameters of skewness and kurtosis were calculated,which corresponding to each measuring point. Calculation results show that the non-gaussian characteristics of skewness and kurtosis in front of windward side was not obvious,and the non-gaussian characteristics of skewness and kurtosis which were inside and back of the conjoined structure were more than standard value significantly. With the change of wind angle when inclined windward,the wind field of the downstream cylinder's skewness and kurtosis had increased obviously. The pulsating wind pressure of structure's surface had many points in strong non-gaussian distribution. Some specialized research,on gust factor of these measuring point,need to be done.
引文
[1]徐海巍,楼文娟,余世策.建筑围护结构内部设计风荷载研究[J].建筑结构学报,2016,37(12):41-48.
    [2]徐海巍,余世策,楼文娟.开孔结构内压脉动影响因子的试验研究[J].浙江大学学报(工学版),2014,48(3):487-491.
    [3]Keerthana M,Harikrishna P. Hermite model based estimation of peak factors for tall buildings subjected to wind induced pressures[J]. Journal of Structural Engineering,2017,44(3):203-213.
    [4]Davenport A G. Note on the distribution of the largest value of a random function with applications to gust loading[J].Proceedings of the Institution of Civil Engineering,1964,28(2):187-196.
    [5]Davenport A G. Gust loading factors[J]. Journal of the Structural Division,ASCE,1967,93(3):11-34.
    [6]蒋磊,李春祥,邓莹.基于LPZ谱分析法的非高斯脉动风压模拟[J].上海大学学报(自然科学版),2017,23(4):600-608.
    [7]林巍,黄铭枫,楼文娟.大跨屋盖脉动风压的非高斯峰值因子计算方法[J].建筑结构,2013,43(15):83-87.
    [8]Kumar K S,Stathopoulos T. Wind loads on low building roofs:a stochastic perspective[J]. Journal of Structural Engineering,2000,126(8):944-956.
    [9]Kumar K S,Stathopoulos T. Synthesis of non-Gaussian wind pressure time series on low building roofs[J]. Journal of Structural Engineering,1999,21(12):1086-1100.
    [10]Giofre M,Gusella V,Grigoriu M. Non-Gaussian wind pressure on prismatic buildings. I:stochastic field[J]. Journal of Structural Engineering,2001,127(9):981-989.
    [11]Giofre M,Gusella V,Grigoriu M. Non-Gaussian wind pressure on prismatic buildings. II:numerical simulation[J]. Journal of Structural Engineering,2001,127(9):990-995.
    [12]中华人民共和国建设部.GB50009-2012,建筑结构荷载规范[S].2012.
    [13]Kareem A,Zhao J. Analysis of non-Gaussian surge response of tension leg platforms under wind loads[J]. Journal of offshore Mechanics and Arctic Engineering,1994,116(3):137-144.
    [14]Kwon D,Kareem A. Peak factor for non-Gaussian processes revisited[C]//Proceedings of the 7th Asia-Pacific Conference on wind engineering,Taipei,2009.
    [15]张秉超,全涌,顾明.考虑极值风速方向性的围护结构设计风荷载概率估计方法研究[J].建筑结构学报,2018,39(4):1-7.
    [16]罗颖,黄国庆,杨庆山,等.基于高阶矩的非高斯风压极值计算[J].建筑结构学报,2018,39(2):146-152.
    [17]徐华舫.空气动力学基础(上册)[M].北京:北京航空学院出版社,1987.
    [18]埃米尔-希缪,罗伯特·H·斯坎伦.风对结构的作用:风工程导论[M].刘尚培,项海帆,谢霁明,译.上海:同济大学出版社,1992.
    [19]邱天爽,张旭秀,李小兵,等.统计信号处理:非高斯信号处理及其应用[M].北京:电子工业出版社,2004:114-119.
    [20]王旭,黄鹏,刘海明,等.超强台风作用下低矮建筑屋盖风压非高斯特性研究[J].建筑结构学报,2016,37(10):132-139.
    [21]叶江水,王仲刚,陈友良,等.基于前四阶矩的非高斯响应概率密度函数逼近方法研究[J].后勤工程学院学报,2010,26(1):12-16.
    [22]陈龙,王丛菲,武岳,等.基于“风压脉冲”的大跨屋盖结构极值风压估计方法研究[J].建筑结构,2018,48(12):85-91.