离子液体作为电解液添加剂用于高压锂离子电池
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ionic liquids as electrolyte additives for high-voltage lithium-ion batteries
  • 作者:张文林 ; 霍宇 ; 李功伟 ; 孙腾飞 ; 赵勇琪 ; 李春利
  • 英文作者:ZHANG Wenlin;HUO Yu;LI Gongwei;SUN Tengfei;ZHAO Yongqi;LI Chunli;National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering, Hebei University of Technology;
  • 关键词:离子液体 ; 电化学 ; 氧化 ; 电解液 ; 高压 ; 添加剂 ; 锂离子电池
  • 英文关键词:ionic liquids;;electrochemistry;;oxidation;;electrolytes;;high voltage;;additive;;lithium-ion battery
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:河北工业大学化工学院化工节能过程集成与资源利用国家地方联合工程实验室;
  • 出版日期:2019-06-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:河北省高等学校科学技术研究项目(ZD2015118)
  • 语种:中文;
  • 页:HGSZ201906034
  • 页数:9
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:316-324
摘要
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi_(0.5)Mn_(1.5)O_4/Li电池的电化学行为和LiNi_(0.5)Mn_(1.5)O_4材料表面形貌。结果表明,当在电解液中添加20%(体积分数) BMIMTFSI时,LiNi_(0.5)Mn_(1.5)O_4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g~(-1),5C下的放电比容量为109.36 mA·h·g~(-1),比在1 mol·L~(-1)LiPF_6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi_(0.5)Mn_(1.5)O_4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。
        The functionalized ionic liquids 1-butyl-3-methylimidazoliumbis(trifluoromethanesulfonyl)imide(BMIMTFSI) was synthesized as a high-pressure lithium ion battery electrolyte additive for inhibiting the oxidation of organic solvents to enhance carbonic acid. The electrochemical behaviors of LiNi_(0.5)Mn_(1.5)O_4/Li batteries and the surface morphology of LiNi_(0.5)Mn_(1.5)O_4 electrode were studied by charge-discharge test, electrochemical impedance spectroscopy(EIS), cyclic voltammetry(CV) and scanning electron microscopy(SEM). The results show that when 20%(vol) BMIMTFSI is added to carbonate-based electrolyte, the highest discharge capacity of LiNi_(0.5)Mn_(1.5)O_4/Li cells is 126.81 mA·h·g~(-1) at 0.2 C rate, and the discharge capacity is 109.36 mA·h·g~(-1) at high rate of 5 C, which is 91.7% higher than that in 1.0 mol·L~(-1)LiPF_6-EC/DMC electrolyte. And the discharge capacity retention rate of LiNi_(0.5)Mn_(1.5)O_4/Li cells reaches about 95% after 50 cycles at 0.2 C rate, which is nearly 10% higher than that with blank electrolytes. The results of SEM showed that a uniform and compact solid electrolyte interface(SEI) film was attached to the surface of LiNi_(0.5)Mn_(1.5)O_4 electrode after adding BMIMTFSI to carbonate-based electrolyte.
引文
[1] Sato T, Maruo T, Marukane S, et al. Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells[J]. Journal of Power Sources, 2004, 138(1):253-261.
    [2] Goodenough J B. Rechargeable batteries:challenges old and new[J]. Journal of Solid State Electrochemistry, 2012, 16(6):2019-2029.
    [3] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
    [4] Choi N S, Chen Z H, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angew.Chem. Int. Ed. Engl., 2012, 51(40):9994-10024.
    [5] Goodenough J B, Park K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013,135(4):1167-1176.
    [6] Fang X, Ding N, Feng X Y, et al. Study of LiNi0.5Mn1.5O4synthesized via a chloride-ammonia co-precipitation method:electrochemical performance, diffusion coefficient and capacity loss mechanism[J]. Electrochimica Acta, 2009, 54(28):7471-7475.
    [7] Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4spinel for 5 V class cathode material of Li-ion secondary battery[J]. Electrochimica Acta, 2004, 49(2):219-227.
    [8] Park S H, Sun Y K. Synthesis and electrochemical properties of 5V spinel LiNi0.5Mn1.5O4cathode materials prepared by ultrasonic spray pyrolysis method[J]. Electrochimica Acta, 2004, 50(2):431-434.
    [9] Wang Z N, Cai Y J, Wang Z H, et al. Vinyl-functionalized imidazolium ionic liquids as new electrolyte additives for highvoltage Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2013, 17(11):2839-2848.
    [10] Arrebola J C, Caballero A, Hernán L, et al. A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4cathode material[J].Journal of Power Sources, 2008, 183(1):310-315.
    [11] Talyosef Y, Markovsky B, Salitra G, et al. The study of LiNi0.5Mn1.5O45 V cathodes for Li-ion batteries[J]. Journal of Power Sources, 2005, 146(1):664-669.
    [12] Zhang L L, Ma Y L, Du C Y, et al. Research on the high-voltage electrolyte for lithium ion batteries[J]. Progress in Chemistry,2014, 26(4):553-559.
    [13] Sun Y K, Hong K J, Prakash J, et al. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4spinel as 5 V materials at elevated temperatures[J]. Electrochemistry Communications,2002, 4(4):344-348.
    [14] Chen J H, Zhang H, Wang M L, et al. Improving the electrochemical performance of high voltage spinel cathode at elevated temperature by a novel electrolyte additive[J]. Journal of Power Sources, 2016, 303:41-48.
    [15] Aurbach D, Markovsky B, Salitra G, et al. Review on electrodeelectrolyte solution interactions, related to cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2007, 165(2):491-499.
    [16]李放放,陈仕谋.高压锂离子电池电解液添加剂研究进展[J].储能科学与技术, 2016, 5(4):436-441.Li F F, Chen S M. Research progress on electrolyte additives for high voltage lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):436-441.
    [17]何新快,侯柏龙,吴璐烨,等.咪唑类离子液体电化学窗口影响因素的研究进展[J].化工新型材料, 2014, 42(6):35-38.He X K, Hou B L, Wu L Y, et al. Effect factors of electrochemical windows of imidazolium ionic liquids[J]. New Chemical Materials,2014, 42(6):35-38.
    [18]王力臻,孙新科,杨许召,等.离子液体在锂离子电池中的应用研究进展[J].电池工业, 2012, 17(3):165-170.Wang L Z, Sun X K, Yang X Z, et al. Application and development of ionic liquids in Li-ion batteries[J]. Chinese Battery Industry, 2012, 17(3):165-170.
    [19]刘卉,陶国宏,邵元华,等.功能化的离子液体在电化学中的应用[J].化学通报, 2004, 11:795-801.Liu H, Tao G H, Shao Y H, et al. Applications of functionalized ionic liquids in electrochemistry[J]. Chemistry, 2004, 11:795-801.
    [20] Zhang W, Li Y, Lin C X, et al. Electrochemical polymerization of imidazolum‐ionic liquids bearing a pyrrole moiety[J]. Journal of Polymer Science Part A Polymer Chemistry, 2008, 46(12):4151-4161.
    [21] Green M D, Cruz D S D L, Ye Y S, et al. Alkyl‐substituted N‐vinylimidazolium polymerized ionic liquids:thermal properties and ionic conductivities[J]. Macromolecular Chemistry&Physics,2011, 212(23):2522-2528.
    [22] Zhou Z B, Matsumoto H, Tatsumi K. Low-melting, low-viscous,hydrophobic ionic liquids:aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates[J]. Chem. Eur. J., 2010, 11(2):752-766.
    [23] Tsunashima K, Sugiya M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes[J]. Electrochemistry Communications, 2007, 9(9):2353-2358.
    [24] Matsumoto H, Sakaebe H, Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte[J]. Journal of Power Sources, 2005,146(1):45-50.
    [25] McEwen A B, Ngo H L, LeCompte K, et al. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications[J]. Journal of the Electrochemical Society,1999, 146(5):1687-1695.
    [26]曹宇,姚田,何志坚,等.离子液体物化性质的理论研究方法及进展[C]//2012年中国药学大会暨第十二届中国药师周论文集.南京:中国药学会, 2012:121-122.Cao Y, Yao T, He Z J, et al. The theoretical research and progress on physical chemistry properties of ionic liquids[C]//2012 Chinese Pharmacology Conference and the 12th Chinese Pharmacist's Weekly Collection. Nanjing:Chinese Pharmaceutical Association,2012:121-122.
    [27] Xing L D, Wang C Y, Xu M Q, et al. Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery[J].Journal of Power Sources, 2009, 189(1):689-692.
    [28]王赟,杨亮,高丹. 1-丁基-3-甲基咪唑四氟硼酸盐的合成研究[J].广东化工, 2011, 38(9):8-9.Wang Y, Yang L, Gao D. The study on the synthesis of 1-butyl-3-methylimidazolium tetrafluoroborate[J]. Guangdong Chemical Industry, 2011, 38(9):8-9.
    [29] Hikari S, Hajime M. N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide(PP13-TFSI)-novel electrolyte base for Li battery[J]. Electrochemistry Communications, 2003, 5(7):594-598.
    [30]郑丽丽,郭晨,刘会洲.离子液体的红外光谱研究[J].光谱学与光谱分析, 2006, 26(7):33-34.Zheng L L, Guo C, Liu H Z. The FT-IR study of ionic liquids[J].Spectroscopy and Spectral Analysis, 2006, 26(7):33-34.
    [31] Han Y K, Lee K, Jung S C, et al. Computational screening of solid electrolyte interphase forming additives in lithium-ion batteries[J]. Computational and Theoretical Chemistry, 2014, 1031:64-68.
    [32]谢晓华,陈立宝,高阳,等.锂离子电池电解液功能组分的设计[J].电池, 2006, 36(6):435-437.Xie X H, Chen L B, Gao Y, et al. Design of electrolyte functional components for Li-ion battery[J]. Battery Bimonthly, 2006, 36(6):435-437.
    [33] Halls M D, Tasaki K. High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives[J].Journal of Power Sources, 2010, 195(5):1472-1478.