滚环扩增信号放大技术在生物检测中应用的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in rolling circle amplification in biological detection
  • 作者:占忠旭 ; 刘巨 ; 陈博璐 ; 汤奕舟 ; 陈官华 ; 许恒毅
  • 英文作者:Zhongxu Zhan;Ju Liu;Bolu Chen;Yizhou Tang;Guanhua Chen;Hengyi Xu;State Key Laboratory of Food Science and Technology,Nanchang University;
  • 关键词:滚环扩增 ; 恒温 ; 生物检测
  • 英文关键词:rolling circle amplification;;isothermal;;biological detection
  • 中文刊名:SHWU
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:南昌大学食品科学与技术国家重点实验室;
  • 出版日期:2019-02-19 09:16
  • 出版单位:生物工程学报
  • 年:2019
  • 期:v.35;No.247
  • 基金:南昌大学食品科学与技术国家重点实验室研究基金(No.SKLF-ZZB-201720)资助~~
  • 语种:中文;
  • 页:SHWU201907007
  • 页数:8
  • CN:07
  • ISSN:11-1998/Q
  • 分类号:64-71
摘要
滚环扩增(Rolling circle amplification,RCA)是一种快速、灵敏且恒温的单链DNA(Single-stranded DNA,ssDNA)扩增技术,与染色或探针联用可实现检测信号的放大,在生物检测等方面得到广泛的应用。文中对RCA的构建方法进行了简介,综述了近几年其在致病菌、核酸肿瘤标记物、蛋白质、生物小分子和病毒等检测中的研究进展,并对其未来的发展趋势进行了展望。
        Rolling circle amplification is a rapid,sensitive and isothermal single-stranded DNA amplification technique that can be used with staining or probes to amplify the detection signal.This technology has been widely used in biological detection and other aspects.The present paper introduces how to design rolling circle amplification,summarize its application in the detection of pathogens,nucleic acid tumor markers,proteins,biological small biomolecules,and viruses in recent years and prospects for future development.
引文
[1]Dean FB,Nelson JR,Giesler TL,et al.Rapid amplification of plasmid and phage DNA using phi29DNA polymerase and multiply-primed rolling circle amplification.Genome Res,2001,11(6):1095-1099.
    [2]Lizardi PM,Huang XH,Zhu ZR,et al.Mutation detection and single-molecule counting using isothermal rolling-circle amplification.Nat Genet,1998,19(3):225-232.
    [3]Zhu XL,Feng C,Zhang B,et al.A netlike rolling circle nucleic acid amplification technique.Analyst,2015,140(1):74-78.
    [4]Jiang HX,Liang ZZ,Ma YH,et al.G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNAdetection.Anal Chim Acta,2016,943:114-122.
    [5]Jiang HX,Xu YP,Dai LH,et al.Ultrasensitive,label-free detection of T4 ligase and T4 polynucleotide kinase based on target-triggered hyper-branched rolling circle amplification.Sens Actuators B Chem,2018,260:70-77.
    [6]Qing TP,He XX,He DG,et al.Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNArepair.Biosens Bioelectron,2017,94:456-463.
    [7]Chen JY,Liu YC,Ji XH,et al.Target-protecting dumbbell molecular probe against exonucleases digestion for sensitive detection of ATP and streptavidin.Biosens Bioelectron,2016,83:221-228.
    [8]Du YC,Zhu YJ,Li XY,et al.Amplified detection of genome-containing biological targets using terminal deoxynucleotidyl transferase-assisted rolling circle amplification.Chem Commun,2018,54(6):682-685.
    [9]Zhao WA,Ali MM,Brook MA,et al.Rolling circle amplification:applications in nanotechnology and biodetection with functional nucleic acids.Angew Chem Int Ed Engl,2008,47(34):6330-6337.
    [10]Xue QW,Kong YC,Wang HS,et al.Liposome-encoded magnetic beads initiated by padlock exponential rolling circle amplification for portable and accurate quantification of microRNAs.Chem Commun,2017,53(78):10772-10775.
    [11]Huang J,Li XY,Du YC,et al.Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.Biosens Bioelectron,2017,91:417-423.
    [12]Hao LL,Gu HJ,Duan N,et al.An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2nanosheet for Staphylococcus aureus detection.Anal Chim Acta,2017,959:83-90.
    [13]Yao L,Ye YW,Teng J,et al.In vitro isothermal nucleic acid amplification assisted surface-enhanced raman spectroscopic for ultrasensitive detection of Vibrio parahaemolyticus.Anal Chem,2017,89(18):9775-9780.
    [14]He Y,Yang X,Yuan R,et al.“Off”to“On”surface-enhanced Raman spectroscopy platform with padlock probe-based exponential rolling circle amplification for ultrasensitive detection of microRNA155.Anal Chem,2017,89(5):2866-2872.
    [15]Chen CH,Luo M,Ye T,et al.Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification.Analyst,2015,140(13):4515-4520.
    [16]Wang S,Bi S,Wang ZH,et al.A plasmonic aptasensor for ultrasensitive detection of thrombin via arrested rolling circle amplification.Chem Commun,2015,51(37):7927-7930.
    [17]Zhang KY,Lv SZ,Lin ZZ,et al.Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation.Biosens Bioelectron,2018,101:159-166.
    [18]Huang L,Wu JJ,Zheng L,et al.Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A.Anal Chem,2013,85(22):10842-10849.
    [19]Kim DM,Seo J,Jun BH,et al.Fluorometric detection of influenza virus RNA by PCR-coupled rolling circle amplification generating G-quadruplex.Sens Actuators B Chem,2017,251:894-901.
    [20]Wen J,Li WS,Li JQ,et al.Study on rolling circle amplification of Ebola virus and fluorescence detection based on graphene oxide.Sens Actuators B Chem,2016,227:655-659.
    [21]Huang MQ,Liu F,Zhou XM.Rapid and isothermal paper-based gene-sensing of viable pathogens with rolling circle amplification.Acta Laser Biol Sin,2017,26(6):527-533(in Chinese).黄梦琪,刘芳,周小明.基于滚环扩增技术的纸基显色传感器用于致病菌快速检测.激光生物学报,2017,26(6):527-533.
    [22]Li F,Xie GY,Zhou BQ,et al.Rapid and simultaneous detection of viable Cronobacter sakazakii,Staphylococcus aureus,and Bacillus cereus in infant food products by PMA-mPCR assay with internal amplification control.LWT,2016,74:176-182.
    [23]Li FL,Li F,Luo D,et al.Biotin-exposure-based immunomagnetic separation coupled with nucleic acid lateral flow biosensor for visibly detecting viable Listeria monocytogenes.Anal Chim Acta,2018,1017:48-56.
    [24]Yu B,Li FL,Zhao TC,et al.Hybridization chain reaction-based flow cytometric bead sensor for the detection of emetic Bacillus cereus in milk.Sens Actuators B Chem,2018,256:624-631.
    [25]Iorio MV,Ferracin M,Liu CG,et al.MicroRNA gene expression deregulation in human breast cancer.Cancer Res,2005,65(16):7065-7070.
    [26]Wu H,Liu YL,Wang HY,et al.Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction.Biosens Bioelectron,2016,81:303-308.
    [27]Xu H,Zhang SX,Ouyang CH,et al.DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs.Talanta,2019,192:175-181.
    [28]Zhou YL,Li BC,Wang MH,et al.Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification.Microchim Acta,2017,184(11):4359-4365.
    [29]Chen L,Liu MM,Zhang YJ,et al.Indirect protein detection by versatile SERS sensors.Spectrosc Spect Anal,2017,37(10):3094-3098(in Chinese).陈雷,刘毛毛,张永军,等.SERS传感器间接检测蛋白质的研究进展.光谱学与光谱分析,2017,37(10):3094-3098.
    [30]Lee CY,Fan HT,Hsieh YZ.Disposable aptasensor combining functional magnetic nanoparticles with rolling circle amplification for the detection of prostate-specific antigen.Sens Actuators B Chem,2018,255:341-347.
    [31]Huang S,Feng MM,Li JW,et al.Voltammetric determination of attomolar levels of a sequence derived from the genom of hepatitis B virus by using molecular beacon mediated circular strand displacement and rolling circle amplification.Microchim Acta,2018,185(3):206.
    [32]Chen YX,Huang KJ,He LL,et al.Tetrahedral DNAprobe coupling with hybridization chain reaction for competitive thrombin aptasensor.Biosens Bioelectron,2018,100:274-281.
    [33]Zhang Y,Luo SH,Situ B,et al.A novel electrochemical cytosensor for selective and highly sensitive detection of cancer cells using binding-induced dual catalytic hairpin assembly.Biosens Bioelectron,2018,102:568-573.
    [34]Yin JJ,Liu YQ,Wang S,et al.Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification.Sens Actuators B Chem,2018,256:573-579.
    [35]Günther S,Felten S,Wess G,et al.Detection of feline Coronavirus in effusions of cats with and without feline infectious peritonitis using loop-mediated isothermal amplification.J Virol Methods,2018,256:32-36.
    [36]Han S,Lee JS,Lee JB.Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.Nanoscale,2017,9(37):14094-14102.
    [37]Zhu GZ,Hu R,Zhao ZL,et al.Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.J Am Chem Soc,2013,135(44):16438-16445.
    [38]Kim E,Zwi-Dantsis L,Reznikov N,et al.One-pot synthesis of multiple protein-encapsulated DNA flowers and their application in intracellular protein delivery.Adv Mater,2017,29(26):1701086.
    [39]Yan YC,Li J,Li WH,et al.DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification.Nanoscale,2018,10(47):22456-22465.