基于有源超材料的可调超薄雷达吸波体研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on tunable ultra-thin radar absorber based on active metamaterial
  • 作者:黄金国 ; 郭宇 ; 赵治亚 ; 李雪 ; 邢明军 ; 谢镇坤
  • 英文作者:HUANG Jin-guo;GUO Yu;ZHAO Zhi-ya;LI Xue;XING Ming-jun;XIE Zhen-kun;Shenzhen Kuang-Chi Institute of Advanced Technology;Shenzhen Kuang-Chi Cutting-edge Technology Co.,Ltd.;AVIC Shenyang Aircraft Design Institute;State Key Laboratory of Metamaterial Electromagnetic Modulation Technology;
  • 关键词:吸波材料 ; 超材料 ; 超薄 ; 可调
  • 英文关键词:radar absorbing material(RAM);;metamaterial;;ultra-thin;;tunable
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:深圳光启高等理工研究院;深圳光启尖端技术有限责任公司;中航工业沈阳飞机设计研究所;超材料电磁调制技术国家重点实验室;
  • 出版日期:2019-06-04 12:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.433
  • 基金:深圳市科技计划资助项目(JSGG20160510111940869,JSGG20150917174734195)
  • 语种:中文;
  • 页:CLGC201906009
  • 页数:5
  • CN:06
  • ISSN:11-1800/TB
  • 分类号:81-85
摘要
在超材料结构中引入电阻和有源变容二极管,通过合理设计微结构型式以及微结构之间的连线方式,实现吸波频带的动态可调,研究电阻、电容和入射波极化方向对吸波特性的影响。结果表明:通过改变外加电压调整超材料的吸收频段,在3.7倍频带范围内实现吸波频段的主动自调节;吸波体的总厚度仅为波长的1/181,相比于传统吸波材料,在同等吸波性能条件下,表现出了优异的超薄特性; TE和TM极化电磁波表现出相同的吸波效果,即吸波特性对入射波的极化方向不敏感。
        A sort of state-of-the-art metamaterial was introduced to serve as an active ultra-thin RAM. The metamaterial consisted of resistors, varactor diodes and micro-structure array. The effect of resistor, capacitor and electromagnetic polarization on the absorbing properties was investigated in detail. The results indicate that its absorption band can be regulated in 3.7 times frequency-band by actively changing the external voltage. The total thickness of the metamaterial RAM is only 1/181 of the wavelength. Compared with the traditional absorbing materials, the metamaterial RAM shows excellent ultra thin feature under the same wave absorbing performance. In addition, for TE and TM polarized electromagnetic wave, the metamaterial RAM exhibits the same wave absorbing property, i.e., its absorbing property is insensitive to the polarization direction of incident wave.
引文
[1] 孙昌.低频微波吸收剂的优选、制备及性能研究[D].济南:山东大学,2007.SUN C.Synthesis and microwave absorbing properties of low frequency absorber[D].Jinan:Shandong University,2007.
    [2] 解帅,冀志江,杨洋,等.电磁波吸收建筑材料的应用研究进展[J].材料导报:综述篇,2016,30(13):63-70.XIE S,JI Z J,YANG Y,et al.Recent progress in electromagnetic wave absorbing building materials[J].Materials Review:Review Papers,2016,30(13):63-70.
    [3] 哈恩华,黄大庆,丁鹤雁.新型轻质雷达吸波材料的应用研究及进展[J].材料工程,2006(3):55-59.HA E H,HUANG D Q,DING H Y.Application research and prospects of new and light mass radar absorbing materials[J].Journal of Materials Engineering,2006(3):55-59.
    [4] 礼嵩明,蒋诗才,望咏林,等.“超材料”结构吸波复合材料技术研究[J].材料工程,2017,45(11):10-14.LI S M,JIANG S C,WANG Y L,et al.Study on "Metamaterial" structural absorbing composite technology[J].Journal of Mater-ials Engineering,2017,45(11):10-14.
    [5] 周卓辉,黄大庆,刘晓来,等.超材料在宽频微波衰减吸收材料中的应用研究进展[J].材料工程,2014(5):91-96.ZHOU Z H,HUANG D Q,LIU X L,et al.Application developments of metamaterials in wideband microwave absorbing materials[J].Journal of Materials Engineering,2014(5):91-96.
    [6] TANG W X,MEI Z L,CUI T J.Theory,experiment and applications of metamaterials[J].Science China Physics,Mechanics & Astronomy,2015,58(12):127001.
    [7] ZHANG Y,WU J,LIANG L,et al.Effect of loss and coupling on the resonance of metamaterial:an equivalent circuit approach[J].Science China Information Sciences,2014,57(12):1-8.
    [8] 张磊,卓林蓉,汤桂平,等.增材制造超材料及其隐身功能调控的研究进展[J].航空材料学报,2018,38(3):10-19.ZHANG L,ZHUO L R,TANG G P,et al.Additive manufacture of metamaterials:a review[J].Journal of Aeronautical Materials,2018,38(3):10-19.
    [9] GAO Q,YIN Y,YAN D B,et al.Application of metamaterials to ultra-thin radar-absorbing material design[J].Electronics Lett-ers,2005,41(17):936-937.
    [10] MATTIUCCI N,BLOEMER M J,AK?ZBEK N,et al.Impedance matched thin metamaterials make metals absorbing[J].Scientific Reports,2013,3(11):3203.
    [11] QUAN B,LIANG X,XU G,et al.Permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation[J].New Journal of Chemistry,2017,41(3):1259-1266.
    [12] ROZANOV K N.Ultimate thickness to bandwidth ratio of radar absorbers[J].IEEE Transactions on Antennas & Propagation,2000,48(8):1230-1234.
    [13] 于相龙,周济.智能超材料研究与进展[J].材料工程,2016,44(7):119-128.YU X L,ZHOU J.Research advance in smart metamaterials[J].Journal of Materials Engineering,2016,44(7):119-128.
    [14] TENNANT A,CHAMBERS B.Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J].Smart Materials & Structures,2004,13(1):122-125.
    [15] XU X,JIANG J,MIAO L,et al.Design of tunable metamaterial absorbers based on PIN diodes[J].IEICE Electronics Express,2012,9(17):1408-1413.
    [16] 戚开南,汪勇峰,侯新宇,等.有源可调微波吸收体分析与优化[J].北京航空航天大学学报,2015,41(10):1853-1858.QI K N,WANG Y F,HOU X Y,et al.Analysis and optimization of active tunable microwave absorber[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(10):1853-1858.
    [17] XU W,HE Y,KONG P,et al.An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J].Journal of Applied Physics,2015,118(18):184903.
    [18] HU F,QIAN Y,LI Z,et al.Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J].Journal of Optics,2013,15(5):5101.
    [19] 王连胜,夏冬艳,吕振肃,等.电控可调谐双波段超材料吸波体分析[J].重庆大学学报,2014,37(8):76-82.WANG L S,XIA D Y,LV Z S,et al.Analysis on electrically controlled tunable dual-band metamaterials absorber[J].Journal of Chongqing University,2014,37(8):76-82.
    [20] LV H,GUO Y,ZHAO Y,et al.Achieving tunable electromagnetic absorber via graphene/carbon sphere composites[J].Carbon,2016,110:130-137.
    [21] D′ALOIA A G,D′AMORE M,SARTO M S.Adaptive broadband radar absorber based on tunable graphene[J].IEEE Transactions on Antennas and Propagation,2016,64(6):2527-2531.
    [22] FANTE R L,McCORMACK M T.Reflection properties of the Salisbury screen[J].IEEE Transactions on Antennas and Propagation,1988,36(10):1443-1454.