二氧化碳羧基化利用探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carboxylative utilization of carbon dioxide
  • 作者:张志智 ; 周明东 ; 孙京 ; 方向晨
  • 英文作者:ZHANG Zhizhi;ZHOU Mingdong;SUN Jing;FANG Xiangchen;State Key Laboratory of Chemical Engineering, East China University of Science and Technology;SINOPEC Dalian Research Institute of Petroleum and Petrochemicals;School of Chemistry and Materials Science, Liaoning Shihua University;
  • 关键词:二氧化碳 ; 羧基化 ; 羧酸 ;
  • 英文关键词:carbon dioxide;;carboxylation;;carboxylic acid;;ester
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:华东理工大学反应工程(联合)国家重点实验室;中国石化大连石油化工研究院;辽宁石油化工大学化学与材料科学学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(1571665125);; 中国石化基础研究计划(061301)
  • 语种:中文;
  • 页:HGJZ201901021
  • 页数:15
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:236-250
摘要
二氧化碳是一种低毒、不易燃、储量丰富且廉价易得的碳一资源,如何有效利用二氧化碳,将二氧化碳转化为高附加值化工品已成为当今研究热点。从能量利用及经济性角度考虑,将二氧化碳作为羧化试剂与具有高能量的起始原料反应,合成具有较高应用价值的羧酸(酯)或碳酸酯类衍生物是二氧化碳规模化利用的重要途径,目前受到了广泛关注。本文综述了近年来二氧化碳羧基化反应的研究进展,从反应的热力学、反应机理以及催化剂和反应工艺的改进等多个方面探讨了通过二氧化碳羧基化反应制备精细化工品的可行性及应用前景。并对该领域研究所存在的问题和局限性进行了总结。最后对今后的发展方向作了展望,指出二氧化碳化学工业的建立还需依赖基础研究的突破,需要开发高性能、廉价、适用范围广的过渡金属催化剂,实现二氧化碳的有效活化和利用。
        Carbon dioxide is a kind of low toxic, non flammable, cheap and abundant C1 resource. The effective conversion of carbon dioxide to high value-added chemicals has become an attractive researchtopic. From the point of view of energy utilization and economy, the utilization of carbon dioxide ascarboxylation reagent together with energetic materials to synthesize carboxylic acids or esters is animportant way and has been attracted much attention. In this paper, the recent progress on thecarboxylation of carbon dioxide is reviewed, and the feasibility and application prospect of thecarboxylation route are discussed from the respect of reaction thermodynamics, mechanism and the improvements of catalyst and reaction process. And the problems and limitations of this research field are summarized. In the end, the future development direction is prospected. Establishment of CO_2 chemical industry relies on the breakthrough of fundamental research. Highly active and cheap transition metal catalysts with wide application are urgently needed, in order to activate and utilize CO_2.
引文
[1] SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbondioxide[J]. Chemical Reviews, 2007, 107(6):2365-2387.
    [2] OMAE I. Recent developments in carbon dioxide utilization forthe production of organic chemicals[J]. Coordination ChemistryReviews, 2012, 256(13-14):1384-1405.
    [3]高志文,肖林飞,陈静,等.二氧化碳与环氧化合物合成环状碳酸酯的研究进展[J].催化学报, 2008, 29(9):831-838.GAO Z W, XIAO L F, CHEN J, et al. Recent advances in thesynthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Chinese Journal of Catalysis, 2008, 29(9):831-838.
    [4] ROKICKI A, KURAN W. The application or carbon-dioxide as adirect material for polymer syntheses in polymerization andpolycondensation reactions[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1981, 100(1):135-186.
    [5]方向晨,张志智,张喜文. CO2的化工利用技术展望[J].当代化工, 2011, 40(3):221-231.FANG X C, ZHANG Z Z, ZHANG X W. Technology prospects ofchemical utilization of CO2[J]. Contemporary Chemical Industry,2011, 40(3):221-231.
    [6]靳治良,钱玲,吕功煊.二氧化碳化学——现状及展望[J].化学进展, 2010, 22(6):1102-1115.JIN Z L, QIAN L, LüG X. CO2chemistry—actuality andexpectation[J]. Progress in Chemistry, 2010, 22(6):1102-1115.
    [7]孙潇磊,张志智,张建,等.二氧化碳和环氧丙烷合成碳酸丙烯酯热力学计算[J].当代化工, 2016, 45(7):1523-1526.SUN X L, ZHANG Z Z, ZHANG J, et al. Thermodynamic analysisof the reaction system for synthesizing propylene carbonate fromcarbon dioxide and propylene oxide[J]. Contemporary ChemicalIndustry, 2016, 45(7):1523-1526.
    [8]彭家建,邓友全.室温离子液体催化合成碳酸丙烯酯[J].催化学报, 2001, 22(6):994-996.PENG J J, DENG Y Q. Formation of propylene carbonatecatalyzed by room temperature ion liquids[J]. Chinese Journal ofCatalysis, 2001, 22(6):994-996.
    [9] LEE E H, AHN J Y, DHARMAN M M, et al. Synthesis of cycliccarbonate from vinyl cyclohexene oxide and CO2using ionicliquids as catalysts[J]. Catalysis Today, 2008, 131(1/2/3/4):130-134.
    [10] DU Y, WANG J Q, CHEN J Y, et al. A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient andenvironmentally friendly chemical fixation of CO2with epoxidesunder supercritical conditions[J]. Tetrahedron Letters, 2006, 47(8):1271-1275.
    [11] HE L N, YASUDA H, SAKAKURA T. New procedure forrecycling homogeneous catalyst:propylene carbonate synthesisunder supercritical CO2conditions[J]. Green Chemistry, 2003, 5(1):92-94.
    [12] SUN J, ZHANG S, CHENG W, et al. Hydroxyl-functionalizedionic liquid:a novel efficient catalyst for chemical fixation of CO2to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49(22):3588-3591.
    [13] XIAO L F, LI F W, PENG J J, et al. Immobilized ionic liquid/zincchloride:heterogeneous catalyst for synthesis of cyclic carbonatesfrom carbon dioxide and epoxides[J]. Journal of MolecularCatalysis A:Chemical, 2006, 253(1-2):265-269.
    [14] LüX B, LIANG B, ZHANG Y J, et al. Asymmetric catalysis withCO2:direct synthesis of optically active propylene carbonate fromracemic epoxides[J]. Journal of the American Chemical Society,2004, 126(12):3732-3733.
    [15] KRUPER W J, DELLAR D D. Catalytic formation of cycliccarbonates from epoxides and CO2with chromiummetalloporphyrinates[J]. The Journal of Organic Chemistry, 1995,60(3):725-727.
    [16] PADDOCK R L, HIYAMA Y, MCKAY J M, et al. Co(Ⅲ)porphyrin/DMAP:an efficient catalyst system for the synthesis of cycliccarbonates from CO2and epoxides[J]. Tetrahedron Letters, 2004,45(9):2023-2026.
    [17] JIN L L, CHANG T, JING H W. Coupling of epoxides with carbondioxide catalyzed by ruthenium porphyrin complex[J]. ChineseJournal of Catalysis, 2007, 28(4):287-288.
    [18] JIN L L, JING H W, CHANG T, et al. Metal porphyrin/phenyltrimethylammonium tribromide:high efficient catalysts forcoupling reaction of CO2and epoxides[J]. Journal of MolecularCatalysis A:Chemical, 2007, 261(2):262-266.
    [19] SHEN Y M, DUAN W L, SHI M. Chemical fixation of carbondioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes[J]. The Journal of Organic Chemistry, 2003, 68(4):1559-1562.
    [20] RAMIN M, GRUNWALDT J D, BAIKER A. Behavior ofhomogeneous and immobilized zinc-based catalysts incycloaddition of CO2to propylene oxide[J]. Journal of catalysis,2005, 234(2):256-267.
    [21] BU Z, QIN G, CAO S. A ruthenium complex exhibiting highcatalytic efficiency for the formation of propylene carbonate fromcarbon dioxide[J]. Journal of Molecular Catalysis A:Chemical,2007, 277(1-2):35-39.
    [22] LI F, XIA C, XU L, et al. A novel and effective Ni complexcatalyst system for the coupling reactions of carbon dioxide andepoxides[J]. Chemical Communications, 2003(16):2042-2043.
    [23] IKURA S, IKUKO M, AKIRA I, et al. Highly efficient synthesis ofcyclic carbonates from epoxides catalyzed by indium tribromidesystem[J]. Tetrahedron Letters, 2011, 52:721–723.
    [24] ROSHAN K R, JOSE T, KIM D, et al. Microwave-assisted onepot-synthesis of amino acid ionic liquids in water:simplecatalysts for styrene carbonate synthesis under atmosphericpressure of CO2[J]. Catalysis Science&Technology, 2014, 4(4):963-970.
    [25] YANO T, MATSUI H, KOIKE T, et al. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retentionof stereochemistry[J]. Chemical Communications, 1997(12):1129-1130.
    [26] LIU M, LIANG L, LI X, et al. Novel urea derivative-based ionicliquids with dual-functions:CO2capture and conversion undermetal-and solvent-free conditions[J]. Green Chemistry, 2016, 18(9):2851-2863.
    [27] MARMITT S, GONCALVES P F. A DFT study on the insertion ofCO2into styrene oxide catalyzed by 1-butyl-3-methyl-imidazolium bromide ionic liquid[J]. Journal of ComputationalChemistry, 2015, 36(17):1322-1333.
    [28] GE W L, WANG X C, ZHANG L Y, et al. Fully-occupied Keggintype polyoxometalate as solid base for catalyzing CO2cycloaddition and Knoevenagel condensation[J]. Catalysis Science&Technology, 2016, 6(2):460-467.
    [29] SONG J L, ZHANG Z F, HU S Q, et al. MOF-5/n-Bu4NBr:anefficient catalyst system for the synthesis of cyclic carbonates fromepoxides and CO2under mild conditions[J]. Green Chemistry,2009, 11(7):1031-1036.
    [30] TAKAHASHI T, WATAHIKI T, KITAZUME S, et al. Synergistichybrid catalyst for cyclic carbonate synthesis:remarkable acceleration caused by immobilization of homogeneous catalyst onsilica[J]. Chemical Communications, 2006, 37(15):1664-1666.
    [31] SUN J, HAN L J, CHENG W G, et al. Efficient acid–basebifunctional catalysts for the fixation of CO2with epoxides undermetal-and solvent-free conditions[J]. ChemSusChem, 2011, 4:502-507.
    [32] SUN J, ZHANG S J, CHENG W G, et al. Hydroxyl-functionalizedionic liquid:a novel efficient catalyst for chemical fixation of CO2to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49:3588–3591.
    [33] WATILE R A, DESHMUKH K M, DHAKE K P. Efficientsynthesis of cyclic carbonate from carbon dioxide using polymeranchored diol functionalized ionic liquids as a highly activeheterogeneous catalyst[J]. Catalysis Science&Technology, 2012, 2(5):1051-1055.
    [34] YANG Z Z, ZHAO Y N, HE L N, et al. Highly efficient conversionof carbon dioxide catalyzed by polyethylene glycol-functionalizedbasic ionic liquids[J]. Green Chemistry, 2012, 14:519-527.
    [35] WANG J Q, SUN J, CHENG W G, et al. Experimental andtheoretical studies on hydrogen bond-promoted fixation of carbondioxide and epoxides in cyclic carbonates[J]. Phys. Chem. Chem.Phys., 2012, 14:11021–11026.
    [36] ZHAO Y, TIAN J S, QI X H. Quaternary ammonium salt-functionalized chitosan:an easily recyclable catalyst for efficientsynthesis of cyclic carbonates from epoxides and carbon dioxide[J]. J. Mol. Catal. A:Chem., 2007, 271:284-289.
    [37]张建,张志智,孙潇磊,等. CO2与环氧丙烷合成碳酸丙烯酯的多相催化剂研究[J].天然气化工(C1化学与化工), 2015(3):41-44.ZHANG J, ZHANG Z Z, SUN X L, et al. Synthesis of propylenecarbonate from CO2and propylene oxide over a novelheterogeneous catalyst[J]. Natural Gas Chemical Industry, 2015(3):41-44.
    [38] ZHANG Z Z, SUN X L, ZHANG X W, et al. Catalytic synthesis ofpropylene carbonate from CO2and propylene oxide on fixed bed[J]. Catalysis Letter, 2016, 146(10):2098-2104.
    [39]张志智,孙潇磊,王陶,等.环状碳酸酯合成的多相催化剂研究[C]//第四届北京二氧化碳捕集利用与封存技术国际论坛.北京:中国石化出版社, 2017:88-92.ZHANG Z Z, SUN X L, WANG T, et al. Synthesis of cycliccarbonates over a novel heterogeneous catalyst[C]//Proceedings of4th International CO2Capture Utilization&Storage(CCUS)Forum. Beijing:SINOPEC Press, 2017:88-92.
    [40] INOUE S, KOINUMA H, TSURUTA T. Copolymerization ofcarbon dioxide and epoxide[J]. Polym. Lett. Ed., 1969, 7(4):287-292.
    [41] CHISHOLM M H, LLOBET D N, ZHOU Z P. Poly(propylenecarbonate). 1. More about poly(propylene carbonate)formed fromthe copolymerization of propylene oxide and carbon dioxideemploying a zinc glutarate catalyst[J]. Macromolecules, 2002, 35(17):6494-6504.
    [42]陈立班,彭汉,林欣欣,等.合成聚碳酸酯、聚酯和聚醚的催化剂:CN89100701.6[P]. 1990-08-15.CHEN L B, PENG H, LIN X X, et al. Catalyst for synthesizingpolycarbonates、polyester and polyether:CN89100701.6[P]. 1990-08-15.
    [43] ZHU Q, MENG Y Z, TJONG S C, et al. Thermally stable and highmolecular weight poly(propylene carbonate)s from carbon dioxide and propylene oxide[J]. Polym. Int., 2002, 51(10):1079-1085.
    [44]孟跃中,诸泉,张世振,等.负载型二元羧酸锌催化剂及其制备方法:CN01130099.X[P]. 2001-12-18.MENG Y Z, ZHU Q, ZHANG S Z, et al. Carried binary zinecarboxylate catalyst and its preparing method:CN01130099.X[P].2001-12-18.
    [45] TAKEDA N, INOUE S. Polymerization of 1,2-epoxypropane andcopolymerization with carbon dioxide catalyzed bymetalloporphyrins[J]. Macromolecular Chemistry&Physics, 1978,179(5):1377-1381.
    [46] ANDERSON C E, VAGIN S I, XIA W, et a1. Cobaltoporphyrincatalyzed CO2/epoxide copolymerization:selectivity control bymoleculardesign[J]. Macromolecules, 2012, 45(17):6840-6849.
    [47] STAMP L M, MANG S A, HOLMES A B, et a1. Polymersupported chromium porphyrin as catalyst for polycarbonateformation in supercritical carbon dioxide[J]. Chem. Commun.,2001(23):2502-2503.
    [48] CHEN X H, SHEN Z Q, ZHANG Y F. New catalytic systems forthe fixation of carbon dioxide. 1. Copolymerization of carbondioxide and propylene oxide with new rare-earth catalysts-RE(P2O4)3-Al(i-Bu)3-R(OH)n[J]. Macromolecules, 1991, 24(19):5305-5308.
    [49]赵晓江,刘宾元,王献红,等.稀土配合物组合催化剂的制备方法:CN98125654.6[P]. 1998-12-14.ZHAO X J, LIU B Y, WANG X H, et al. Process for preparingcomposite catalyst for rare-earth complex:CN98125654.6[P].1998-12-14.
    [50]赵晓江,刘宾元,王献红,等.高分子量脂肪族聚碳酸酯的制备方法:CN98125655.4[P]. 1998-12-14.ZHAO X J, LIU B Y, WANG X H, et al. Process for preparinghigh molecular weight aliphatic polycarbonate:CN98125655.4[P].1998-12-14.
    [51] LIU B Y, ZHAO X J, WANG X H, et al. Copolymerization ofcarbon dioxide and propylene oxide with Ln(CCl3COO)3-basedcatalyst:The role of rare-earth compound in the catalytic system[J]. J. Polym. Sci., Part A:Polym. Chem., 2001, 39(16):2751-2754.
    [52] LIU B Y, ZHAO X J, WANG X H, et al. Copolymerization ofcarbon dioxide and propylene oxide with neodymiumtrichloroacetate-based coordination catalyst[J]. Polymer, 2003, 44(6):1803-1808.
    [53]关越,孙万付,张志智,等. CO2和乙烯合成丙烯酸反应的热力学分析[J].石油化工高等学校学报, 2012, 25(3):6-12.GUAN Y, SUN W F, ZHANG Z Z, et al. Thermodynamic analysison the formation of acrylic acid from CO2and C2H4[J]. Journal ofPetrochemical Universities, 2012, 25(3):6-12.
    [54] HOBERG H, SCHAEFER D. Nickel(0)induzierte C—C-verknüpfung zwischen alkenen und kohlendioxid[J]. J.Organomet. Chem., 1982, 236(1):C28-C30.
    [55] HOBERG H, PERES Y, KRUGER C. A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide:preparation,structure, and reactivity[J]. Angew Chem. Int. Ed. Engl., 1987, 26(8):771-773.
    [56] PLESSOW P N, WEIGEL L, LINDNER R, et al. Mechanistic detailsof the nickel-mediated formation of acrylates from CO2, ethyleneand methyl iodide[J]. Organometallics, 2013, 32:3327-3338.
    [57] ARESTA M, PASTORE C, GIANNOCCARO P, et al. Evidence for-spontaneous release of acrylates from a transition-metal complexupon coupling ethane or propene with a carboxylic moiety or CO2[J]. Chem. Eur. J., 2007, 13:9028-9034.
    [58] GRAHAM D C, MITCHELL C, BRUCE M I, et al. Production ofacrylic acid through nickel-mediated coupling of ethylene andcarbon dioxide—A DFT Study[J]. Organometallics, 2007, 26:6784-6792.
    [59] BRUCKMEIER C, LEHENMEIER M W, REICHARDT R, et al.Formation of methyl acrylate from CO2and ethylene via methylation of nickelalactones[J]. Organometallics, 2010, 29:2199-2202.
    [60] LEE S Y T, GHANI A A, D’ELIA V, et al. Liberation of methylacrylate from metallalactone complexes via M-O ring opening(M=Ni, Pd)with methylation agents[J]. New J. Chem., 2013, 37:3512-2515.
    [61] ZHANG Z Z, GUO F J, KüHN F E, et al. Liberation of acrylatesfrom nickelalactones via Ni-O ring opening with alkyl iodides[J].Appl. Organomet. Chem., 2017, 31(2):3567-3568.
    [62] JIN D, SCHMEIER T J, WILLIARD P G, et al. Lewis acidinduced belimination from a nickelalactone:efforts towardacrylate production from CO2and ethylene[J]. Organometallics,2013, 32:2152-2159.
    [63] JIN D, WILLIARD P G, HAZARI N, et al. Effect of sodium cationon metallacycle beta-hydride elimination in CO2-ethylenecoupling to acrylates[J]. Chem. Eur. J., 2014, 20:3205-3211.
    [64] LEJKOWSKI M L, LINDNER R, KAGEYAMA T, et al. The firstcatalytic synthesis of an acrylate from CO2and an alkene—Arational approach[J]. Chem. Eur. J., 2012, 18:14017-14025.
    [65] HENDRIKSEN C, PIDKO E A, YANG G, et al. Catalyticformation of acrylate from carbon dioxide and ethene[J]. Chem. A.Eur. J., 2014, 20(38):12037-12040.
    [66] ALVAREZ R, CARMONA E, COLE-HAMILTON D J, et al.Formation of acrylic acid derivatives from the reaction of carbondioxide with ethylene complexes of molybdenum and tungsten[J].J. Am. Chem. Soc., 1985, 107(19):5529-5531.
    [67] GALINDO A, PASTOR A, PEREZ P J, et al. Bis(ethylene)complexes of molybdenum and tungsten and their reactivitytoward carbon dioxide. New examples of acrylate formation bycoupling of ethylene and carbon dioxide[J]. Organometallics,1993, 12:4443-4451.
    [68] SCHUBERT G, PáPAìI. Acrylate formation via metal-assistedC—C coupling between CO2and C2H4:reaction mechanism asrevealed from density functional calculations[J]. J. Am. Chem.Soc., 2003, 125:14847-14858.
    [69] COLLAZO C, CONEJO M D M, PASTOR A, et al. Synthesis andreactivity of bis(ethylene)-phosphite complexes of molybdenum(0)[J]. Inorg. Chim. Acta., 1998, 272:125-129.
    [70] BERNSKOETTER W H, TYLER B T. Kinetics and mechanism ofmolybdenum-mediated acrylate formation from carbon dioxideand ethylene[J]. Organometallics, 2011, 30:520-527.
    [71] ARESTA M, PASTORE C, GIANNOCCARO P, et al. Evidence forspontaneous release of acrylates from a transition-metal complexupon coupling ethene or propene with a carboxylic moiety or CO2[J]. Chem. Eur. J., 2007. 13:9028-9034.
    [72] MANZINI S, HUGUET N, TRAPP O, et al. Palladium-andnickel-catalyzed synthesis of sodium acrylate from ethylene, CO2,and phenolate bases:optimization of the catalytic system for a potential process[J]. Eur. J. Org. Chem., 2015. Doi.org/10.1002/ejoc.201501113.
    [73] LI B, KYRAN S J, YEUNG A D, et al. Acrylic acid derivatives ofGroup 8 metal carbonyls:a structural and kinetic study[J]. Inorg.Chem., 2013, 52:5438-5447.
    [74] HOBERG H, JENNI K, ANGERMUND K, et al. C-C-linkages ofethene with CO2on an iron(0)complex-synthesis and crystalstructure analysis of[(PEt3)2Fe(C2H4)2][J]. Angew Chem. Int. Ed.,1987, 26:153-155.
    [75] ALT H G, DENNER C E. Metallacyclen des zirkonocens[J]. J.Organomet. Chem., 1990, 390(1):53-60.
    [76] CHATANI N, YAMASHITA K. Cp2ZrCl2-mediated three-component coupling reactions of CO2, ethylene(or alkynes), andelectrophiles leading to carboxylic acid derivatives[J]. Synlett.,2005, 36(35):919-922.
    [77] ARESTA M, QUARANTA E. Synthesis, characterization andreactivity of[Rh(bpy)(C2H4)Cl]. A study on the reaction with C1molecules(CH2O, CO2)and NaBPh4[J]. J. Organomet. Chem.,1993, 463:215-221.
    [78] CHOI J C, KOHNO K, OTSUKA M, et al. Synthesis of a Rhodium(Ⅲ)diethylμ-carbonato complex in the reaction of CO2, H2O andethylene[J]. Organometallics, 2011, 30:6060-6062.
    [79] BURKHART G, HOBERG H. Oxanickelacyclopentene derivativesfrom nickel(0), carbon dioxide, and alkynes[J]. Angew. Chem. Int.Ed. Engl., 1982, 21(1):76-76.
    [80] GRAHAM D C, BRUCE M I, METHA G F, et al. Regioselectivecontrol of the nickel-mediated coupling of acetylene and carbondioxide—A DFT study[J]. Journal of Organometallic Chemistry,2008, 693(16):2703-2710.
    [81] SAITO S, NAKAGAWA S, KOIZUMI T, et al. Nickel-mediatedregio-and chemoselective carboxylation of alkynes in the presenceof carbon dioxide[J]. J. Org. Chem., 1999, 64:3975-3978.
    [82] LIU C, LUO Y, ZHANG W Z, et al. DFT studies on the silver-catalyzed carboxylation of terminal alkynes with CO2:an insightinto the catalytically active species[J]. Organometallics, 2014, 33:2984-2989.
    [83] GOO?EN L J, RODRIGUEZ N, MANJOLINHO F, et al. Synthesisof propiolic acids via copper-catalyzed insertion of carbon dioxideinto the C—H bond of terminal alkynes[J]. Adv. Synth. Catal.,2010, 352(17):2913-2917.
    [84] YU D, HALPERN Y, Copper-and copper-N-heterocyclic carbene-catalyzed C—H activating carboxylation of terminal alkynes withCO2at ambient conditions[J]. Proc. Natl. Acad. Sci. USA, 2010,107:20184-20189.
    [85] ZHANG X, ZHANG W Z, REN X, et al. Ligand-free Ag(I)-catalyzed carboxylation of terminal alkynes with CO2[J]. Org.Lett., 2011, 13(9):2402-2405.
    [86] YU D Y, TAN M X, ZHANG Y G. Carboxylation of terminalalkynes with carbon dioxide catalyzed by poly(N-heterocycliccarbene)-supported silver nanoparticles[J]. Adv. Synth. Catal.,2012, 354(6):969-974.
    [87] ZHANGWZ,LIWJ,ZHANGX,etal.Cu(I)-catalyzedcarboxylativecoupling of terminal alkynes, allylic chlorides, and CO2[J]. Org.Lett., 2010, 12(21):4748-4751.
    [88] INAMOTO K, ASANO N, KOBAYASHI K, et al. A copper-basedcatalytic system for carboxylation of terminal alkynes:synthesis ofalkyl 2-alkynoates[J]. Org. Biomol. Chem., 2012, 10:1514-1516.
    [89] YU B, ZHEN F D, CHUN X G, et al. Carboxylation of terminalalkynes at ambient CO2pressure in ethylene carbonate[J]. GreenChem., 2013, 15:2401-2407.
    [90] LI S S, SUN J, Zhang Z Z, et al. Carboxylation of terminal alkyneswith CO2using novel silver N-heterocyclic carbene complexes[J].Dalton Transactions, 2016, 45(26):10577-10584.
    [91] ZHANG Z Z, MI R J, GUO F J, et al. 1, 3-Bis(4-methylbenzyl)imidazol-2-ylidene silver(I)chloride catalyzed carboxylativecoupling of terminal alkynes, butyl iodide and carbon dioxide[J]. J.Saudi. Chem. Soc., 2017, 21(6):685-690.
    [92] GUO F J, ZHANG Z Z, WANG J Y, et al. Silver-catalyzed one-pot synthesis of benzyl 2-alkynoates under ambient pressure ofCO2and ligand-free conditions[J]. Tetrahedron, 2017, 73(7):900-906.
    [93]李永昕,马清祥,陈兴权. KOH/Naβ催化剂上丙醇与碳酸二甲酯合成碳酸二丙酯[J].石油化工, 2005, 34(9):827-830.LI Y X, MA Q X, CHEN X Q. Synthesis of dipropyl carbonatefrom dimethyl carbonate and propyl alcohol on KOH/Naβcatalyst[J]. Petrochemical Technology, 2005, 34(9):827-830.
    [94]王庆印,钱锦华,姚杰,等. KI催化酯交换合成碳酸二正辛酯[J].分子催化, 2005, 19(6):462-467.WANG Q Y, QIAN J H, YAO J, et al. Potassium iodide used ascatalyst for synthesis of dioctyl carbonate by transesterification[J].Journal of Molecular Catalysis(China), 2005, 19(6):462-467.
    [95]任勃,李茹民,董国君. CaO/ZrO2固体碱的制备及催化合成碳酸二异辛酯[J].应用科技, 2006, 33(11):66-68.REN B, LI R M, DONG G J. Synthesis of di-2-ethyhexylcarbonate with CaO/ZrO2solid base catalyst[J]. Applied Scienceand Technology, 2006, 33(11):66-68.
    [96]赵天生,韩怡卓,孙予罕.金属氧化物负载的KI对合成碳酸丙烯酯的催化性能[J].石油化工, 2000, 29(2):101-105.ZHAO T S, HAN Y Z, SUN Y H. Synthesis of propylene carbonatecatalyzed by metal oxide supported KI[J]. PetrochemicalTechnology, 2000, 29(2):101-105.
    [97] RYU Y J, GELB EIN A P. Process and catalyst for making dialkylcarbonate:US6392078B1[P]. 2002-05-21.
    [98]王佃顺,张喜文,孙潇磊,等.金属氧化物催化尿素与甲醇合成碳酸二甲酯[J].天然气化工(C1化学和化工), 2013, 38(6):27-37.WANG D S, ZHANG X W, SUN X L, et al. Synthesis of dimethylcarbonate from urea and methanol catalyzed by metal oxides[J].Natural Gas Chemical Industry, 2013, 38(6):27-37.
    [99] ZHANG Z Z, SUN X L, ZHANG X W, et al. Synthesis ofdimethylcarbonate from urea and methanol catalyzed by variousmetal oxides and salts[J]. Journal of Fuel Chemistry andTechnology, 2015, 43(11):1375-1379.
    [100]孙潇磊,张志智,尹泽群,等.负载硝酸锌硅凝胶催化甲醇与尿素合成碳酸二甲酯[J].天然气化工(C1化学和化工), 2016, 41(3):62-64.SUN X L, ZHANG Z Z, YIN Z Q, et al. Synthesis of dimethylcarbonate from urea and methanol over silicongel support zincnitrate catalysts[J]. Natural Gas Chemical Industry, 2016, 41(3):62-64.
    [101] ETA V, M?KIARVELA P, LEINO A, et al. Synthesis of dimethylcarbonate from methanol and carbon dioxide:circumventingthermodynamic limitations[J]. Ind. Eng. Chem. Res., 2010, 49(20):9609-9617.
    [102] JUNG K T, BELL A T. An in situ infrared study of dimethylcarbonate synthesis from carbon dioxide and methanol overzirconia[J]. J. Catal., 2001, 204(2):339-347.
    [103] YAMAZAKI Y, KAKUMA K, DU Y, et al. Synthesis of carbonatesdirectly from 1atm CO2and alcohols using CH2Cl2[J]. Tetrahedron,2010, 66:9675-9680.
    [104] WADDELL D C, THIEL I, BUNGER A, et al. Investigating theformation of dialkyl carbonates using high speed ball milling[J].Green Chem., 2011, 13:3156-3161.
    [105] HE Y X, SUN J, GUO F J, et al. Efficient synthesis of dibenzylcarbonates from benzyl halides and Cs2CO3[J]. Journal of SaudiChemical Society, 2017, 21:583-586.
    [106] ZHANG Z, LIAO L L, YAN S S, et al. Lactamization of sp2 C—Hbonds with CO2:transition-metal-free and redox-neutral[J].Angew Chem. Int. Ed., 2016, 55:7068-7072.
    [107] WANG S, SHAO P, DU G X, et al. MeOTf-and TBD-mediatedcarbonylation of ortho-arylanilines with CO2leading tophenanthridinone[J]. J. Org. Chem., 2016, 81(15):6672-6676.
    [108] ZHANG Z, JU T, MIAO M, et al. Transition-metal-freelactonization of sp2 C–H bonds with CO2[J]. Org. Lett., 2017, 19(2):396-399.
    [109] ZHANG W Z, LüS, LU X B. DBU-promoted carboxylativecyclizationofo-hydroxy-ando-acetamidoacetophenon[J].BeilsteinJ. Org. Chem., 2015, 11:906-912.
    [110] ZHANG W Z, YANG M W, LüX B. Carboxylative cyclization ofsubstituted propenyl ketones using CO2:transition-metal-freesynthesis ofα-pyrones[J]. Green Chem., 2016, 18:4181-4184.
    [111] KAICHARLA T, THANGARAJ M, BIJU A T. Practical synthesisof phthalimides and benzamides by a multicomponent reactioninvolving arynes, isocyanides, and CO2/H2O[J]. Org. Lett., 2014,16(6):1728-1731.
    [112] FUJIHARA T, HORIMOTO Y, MIZOE T, et al. Nickel-catalyzeddouble carboxylation of alkynes employing carbon dioxide[J]. Org.Lett., 2014, 16(18):4960-4863.
    [113] GARCIA-DOMINGUEZ P, FGHR L, RUSCONI G, et al.Palladium-catalyzed incorporation of atmospheric CO2:efficientsynthesis of functionalized oxazolidinones[J]. Chem. Sci., 2016, 7:3914-3918.
    [114] RINTJEMA J, EPPING R, FIORANI G, et al. Substrate-controlled product divergence:conversion of CO2into heterocyclicproducts[J]. Angew. Chem. Int. Ed., 2016, 55(12):3972-3976.
    [115] GAO X, YU B, YANG Z Z, et al. Ionic liquid-catalyzed C–Sbond construction using CO2as a C1 building block under mildconditions:a metal-free route to synthesis of benzothiazoles[J]ACS Catal., 2015, 5(11):6648-6652.
    [116] WANG X Q, LIU Y, MARTIN R. Ni-catalyzed divergentcyclization/carboxylation of unactivated primary and secondaryalkyl halides with CO2[J]. J. Am. Chem. Soc., 2015, 137(20):6476-6479.