海底天然气水合物原位提纯分离器结构设计及优选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural design and optimization of in-situ purification separator for submarine gas hydrate
  • 作者:邱顺佐 ; 王国荣 ; 周守为 ; 刘清友 ; 李清平 ; 钟林 ; 王腾 ; 唐洋 ; 王雷振 ; 王广申 ; 李学峰
  • 英文作者:QIU Shunzuo;WANG Guorong;ZHOU Shouwei;LIU Qingyou;LI Qingping;ZHONG Lin;WANG Teng;TANG Yang;WANG Leizhen;WANG Guangshen;LI Xuefeng;College of Mechatronic Engineering, Southwest Petroleum University;CNOOC;State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University;Chengdu University of Technology;CNOOC Research Institute Co., Ltd.;
  • 关键词:天然气水合物 ; 固态流化开采方法 ; 原位提纯分离器 ; 结构优选 ; 单因素法 ; 正交试验法
  • 英文关键词:natural gas hydrate;;solid fluidization mining method;;in-situ purification separator;;structure optimization;;single factor method;;orthogonal test method
  • 中文刊名:ZHSD
  • 英文刊名:China Offshore Oil and Gas
  • 机构:西南石油大学机电工程学院;中国海洋石油集团有限公司;西南石油大学油气藏地质及开发工程国家重点实验室;成都理工大学;中海油研究总院有限责任公司;
  • 出版日期:2019-04-24
  • 出版单位:中国海上油气
  • 年:2019
  • 期:v.31
  • 基金:国家重点研发计划项目“海洋水合物固态流化测试新技术——天然气水合物高效破岩研究(编号:2016YFC0304008)”;; 中国工程院战略咨询项目“我国深水工程技术和深水装备发展战略研究——海底浅层天然气水合物与矿产资源开发战略研究(编号:2017-XZ-10-02-02)”部分研究成果
  • 语种:中文;
  • 页:ZHSD201902015
  • 页数:7
  • CN:02
  • ISSN:11-5339/TE
  • 分类号:129-135
摘要
深水浅层非成岩天然气水合物储层胶结性差、含砂量大,在应用固态流化方法开采时原位提纯除砂回填具有可降低能耗、增加开采效率和防止储层坍塌等优势。基于固态流化开采方法提出了原位分离工艺,根据相关经验公式设计了原位分离器结构和初定参数,并采用CFD-Fluent结合单因素法与正交试验法对分离器溢流口直径、锥角、圆柱段长度以及底流口直径等结构参数进行了优选分析。分析结果表明,随着溢流口直径、锥角、圆柱段长度和底流口直径的增大,分离效率先增大后减小;采用单因素法优选结构参数后分离器除砂效率高达98.7%、天然气水合物回收效率高达97.8%,采用正交试验法优选结构参数后分离器除砂效率高达93.8%、水合物回收效率高达98.5%;从最大程度回收天然气水合物考虑,正交试验法对提纯分离器结构参数进行优选效果更好,且应着重考虑底流口直径。本文研究成果可为天然气水合物混合浆体原位提纯分离器设计、制造提供参考。
        The deep water shallow non-diagenetic natural gas hydrate reservoir exhibits poor cementation and large sand content. When the hydrate is produced with solid fluidization method, the in-situ purification and sand removal backfilling have the advantages of reducing energy consumption, enhancing mining efficiency, avoiding reservoir collapse, etc. Based on the solid fluidization mining method, the in-situ separation process was proposed, the structure and initial parameters of this separator were designed according to relevant empirical formulas, and the structural parameters such as the diameter of separator overflow port, taper angle, cylindrical section length and the diameter of the underflow port were optimally analyzed by CFD-Fluent combined with single factor method and orthogonal test method. The analysis results show that as the diameter of overflow port, taper angle, cylindrical section length and the diameter of underflow port increase, the separation efficiency increases initially and then decreases. After the structural parameters are optimized by the single-factor method, the sand removal efficiency of separator is as high as 98.7%, the recovery efficiency of natural gas hydrate is up to 97.8%. After the structural parameters are optimized by the orthogonal test method, the sand removal efficiency is as high as 93.8% and the hydrate recovery efficiency is as high as 98.5%. From the perspective of maximizing the recovery of hydrate, the orthogonal test method can more effectively optimize the structural parameters of the purification separator, and more attention shall be paid to the diameter of underflow port. The research results in this paper can provide reference for the design and manufacturing of natural gas hydrate mixed slurry in-situ purification separator.
引文
[1] 史斗,孙成权,朱岳听.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992.
    [2] KVENVOLDEN K A.Gas hydrates as a potential energy resource:A review of their methane content[C].United States Geological Survey,Professional Paper,1993.
    [3] KVENVOLDEN K A.Gas hydrates & geological perspective and global change[J].Reviews of Geophysics,1996,31(2):173-187.
    [4] 周守为,陈伟,李清平.深水浅层天然气水合物固态流化绿色开采技术[J].中国海上油气,2014,26(5):1-7.ZHOU Shouwei,CHEN Wei,LI Qingping.The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J].China Offshore Oil and Gas,2014,26(5):1-7.
    [5] GORNITZ V,FUNG I.Potential distribution of methane hydrates in the world’s oceans[J].Global Biogeochemical Cycles,1994,8(3):335-347.
    [6] 周守为,李清平,陈伟,等.深海海底浅层非成岩地层天然气水合物的绿色开采系统: 中国,201310595204.X[P].2014-03-12.
    [7] 伍开松,代茂林.海底水合物混合浆体除泥砂水力旋流器[J].北京工业大学学报,2015(7):973-979. WU Kaisong,DAI Maolin.Hydrocyclone for separating silt in gas hydrate mixed slurry on the seabed[J].Journal of Beijing University of Technology,2015,41(7):973-979.
    [8] 陈浩,吕斌,付来强,等.水力旋流器对海底天然气水合物混合浆体分离提纯[J].现代化工,2017(1):155-159.
    [9] 代茂林.水合物浆体螺旋管多相流动及分离研究[D].成都:西南石油大学,2017.
    [10] 周守为,陈伟,李清平,等.深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J].中国海上油气,2017,29(4):1-8.DOI:10.11935/j.issn.1673-1506.2017.04.001.ZHOU Shouwei,CHEN Wei,LI Qingping,et al.Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J].China Offshore Oil and Gas,2017,29(4):1-8.DOI:10.11935/ j.issn.1673-1506.2017.04.001.
    [11] 周守为,陈伟,杨秀夫,等.海域非成岩和成岩天然气水合物流化试采方法:中国,201510823585.1[P].2016-01-20.
    [12] 庞学诗.水力旋流器技术与应用[M].北京:中国石化出版社,2011.
    [13] MURTHY Y R,BHASKAR K U.Parametric CFD studies on hydrocyclone[J].Powder Technology,2012,230:36-47.
    [14] YIN K Y,AL-KAYIEM H H,PAO W.Numerical study of water control with downhole oil-water separation technology[C].MATEC Web of Conferences(ICPER 2014-4th International Conference on Production,Energy and Reliability),EDP Sciences,2014.
    [15] GHODRAT M,KUANG S B,YU A B,et al.Numerical analysis of hydrocyclones with different vortex finder configurations[J].Minerals Engineering,2014,63(4):125-138.
    [16] NARASIMHA M,BRENNAN M,HOLTHAM P N.Large eddy simulation of hydrocyclone—prediction of air-core diameter and shape[J].International Journal of Mineral Processing,2006,80(1):1-14.
    [17] WANG B,YU A B.Numerical study of particle-fluid flow in hydrocyclones with different body dimensions[J].Minerals Engineering,2006,19(10):1022-1033.
    [18] MOUSAVIAN S M,NAJAFI A F.Numerical simulations of gas-liquid-solid flows in a hydrocyclone separator[J].Archive of Applied Mechanics,2009,79(5):395-409.