不锈钢球封装相变材料太阳能热水系统性能实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental studies on phase change material packaged in stainless steel balls for solar hot water system
  • 作者:刘玮 ; 周志华 ; 黄欣 ; 张淑贞 ; 尹立增 ; 郭卫星
  • 英文作者:Liu Wei;Zhou Zhihua;Huang Xin;Zhang Shuzhen;Yin Lizeng;Guo Weixing;Tianjin University;
  • 关键词:太阳能热水系统 ; 相变材料 ; 不锈钢球 ; 蓄热 ; 放热 ; 保温 ; 太阳能保证率
  • 英文关键词:solar hot water system;;phase change material;;stainless steel ball;;heat storage;;heat release;;thermal insulation;;solar fraction
  • 中文刊名:NTKT
  • 英文刊名:Heating Ventilating & Air Conditioning
  • 机构:天津大学;天津富力城房地产开发有限公司;华润置地(山东)有限公司;天津生态城建设投资有限公司;
  • 出版日期:2019-02-15
  • 出版单位:暖通空调
  • 年:2019
  • 期:v.49;No.355
  • 基金:天津市自然科学基金重点项目“建筑能源供应低碳环保评价方法研究”(编号:17JCZDJC39800)
  • 语种:中文;
  • 页:NTKT201902027
  • 页数:6
  • CN:02
  • ISSN:11-2832/TU
  • 分类号:117-122
摘要
对居住建筑集中式太阳能热水系统的蓄放热性能进行了研究,选取直径为60 mm的不锈钢球封装添加膨胀石墨的石蜡相变材料,对比了相变温度为55℃和60℃的相变材料在不同太阳辐照量情况下的相变水箱蓄热、放热和保温性能。以用户日最大需求为基准,对太阳能保证率进行了计算。结果表明:热水系统的蓄热时间为2.0~4.5 h;55℃和60℃相变材料对应的太阳能保证率平均值分别为75%和80%,相变蓄热效果好于无蓄热工况,且相变蓄热使系统的太阳能保证率有明显提升;相变温度为60℃的材料较适用于集中式太阳能热水系统。
        Studies the heat storage and release performances of centralized solar hot water system of a residential building. Packages the phase change material(PCM) of paraffin with expanded graphite in stainless steel balls with a diameter of 60 mm. Compares heat storage and release and heat insulation performances of two PCMs with a phase-transition temperature of 55 ℃ and 60 ℃ under different solar radiation. Calculates the solar fraction based on the maximum day demand of users. The results show that the heat storage time of the hot water system is 2.0 to 4.5 hours. An average solar fraction is 75% and 80% for PCMs with a phase-transition temperature of 55 ℃ and 60 ℃, respectively. Phase change heat storage can enhance the solar fraction and is better than that without heat storage. PCMs with a phase-transition temperature of 60 ℃ is suitable for centralized solar hot water systems.
引文
[1] 岳效龙. 太阳能热水系统运行保证率影响因素分析[J]. 给水排水,2016,42(7):81- 83
    [2] PANDEY K M, CHAURASIYA R. A review on analysis and development of solar flat plate collector[J]. Renewable and Sustainable Energy Reviews, 2017, 67:641- 650
    [3] SABIHA M A, SAIDUR R, MEKHILEF S, et al. Progress and latest developments of evacuated tube solar collectors[J]. Renewable and Sustainable Energy Reviews, 2015, 51:1038- 1054
    [4] SHUKLA A, BUDDHI D, SAWHNEYR L. Solar water heaters with phase change material thermal energy storage medium: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 2119- 2125
    [5] KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913- 1965
    [6] ABHAT A. Low temperature latent heat thermal energy storage: heat storage materials[J]. Solar Energy, 1983, 30(4): 313- 332
    [7] SEDDEGH S, WANG X, HENDERSON A D, et al. Solar domestic hot water systems using latent heat energy storage medium: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 49:517- 533
    [8] TARHAN S, SARI A, YARDIM M H. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials[J]. Energy Conversion and Management, 2006, 47: 2143- 2154
    [9] QARNIA H E. Numerical analysis of a coupled solar collector latent heat storage unit using various phase change materials for heating the water[J]. Energy Conversion and Management, 2009, 50(2): 247- 254
    [10] HASSAN M M, BELIVEAU Y. Modeling of an integrated solar system[J]. Building and Environment, 2008, 43(5): 804- 810
    [11] TALMATSKY E, KRIBUS A. PCM storage for solar DHW: an unfulfilled promise?[J]. Solar Energy, 2008, 82(10): 861- 869
    [12] KOUSKSOU T, BRUEL P, CHERREAU G, et al. PCM storage for solar DHW: from an unfulfilled promise to a real benefit[J]. Solar Energy, 2011, 85(9): 2033- 2040
    [13] PADOVAN R, MANZAN M. Genetic optimization of a PCM enhanced storage tank for solar domestic hot water systems[J]. Solar Energy, 2014, 103(5): 563- 573
    [14] SCHR?DER J, GAWRON K.Latent heat storage[J]. International Journal of Energy Research, 1981, 5(2):103- 109
    [15] DESGROSSEILLIERS L, MURRAY R, SAFATLI A, et al. Phase change material selection in the design of a latent heat energy storage system coupled with a domestic hot water solar thermal system[G]//ASHRAE Trans, 2011, 117(1):183- 190
    [16] GONG Z X, MUJUMDARA S. Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger[J]. Applied Thermal Engineering, 1997, 17(6): 583- 591
    [17] ADINE H A, QARNIA H E. Numerical analysis of the thermal behavior of a shell-and-tube heat storage unit using phase change materials[J]. Applied Mathematical Modelling, 2009, 33(4): 2132- 2144
    [18] AGYENIM F, EAMES P, SMYTH M. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array[J]. Renewable Energy, 2010, 35(1): 198- 207
    [19] HENDRA R, MAHLIA T M I, MASJUKIH H. Thermal and melting heat transfer characteristics in a latent heat storage system using mikro[J]. Applied Thermal Engineering, 2005, 25(10): 1503- 1515
    [20] HAMADA Y, OHTSU W, FUKAI J. Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates[J]. Solar Energy, 2003, 75(4): 317- 328
    [21] CABEZA L F, IBANEZ M I, MEHLING H, et al. Use of phase change materials in solar domestic hot water tanks[G]//ASHRAE Trans, 2006, 112(1): 495- 508
    [22] AGHBALOU F, BADIA F, ILLA J. Exergetic optimization of solar collector and thermal energy storage system[J]. International Journal of Heat and Mass Transfer, 2006, 49(7/8): 1255- 1263
    [23] SOLé C, MEDRANO M, CASTELL A, et al. Energetic and exergetic analysis of a domestic water tank with phase change material[J]. International Journal of Energy Research, 2008, 32(3): 204- 214
    [24] 刘玮,周志华,郭卫星,等. 塑料球封装相变材料太阳能热水蓄热性能实验研究[J]. 建筑节能,2018,46(7):125- 133
    [25] 中国建筑设计研究院. 民用建筑太阳能热水系统应用技术规范:GB 50364—2005[S].北京:中国建筑工业出版社,2005:9