赤道低纬电离层瑞利-泰勒不稳定性初始扰动波数的临界值
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Critical Value of Initial Disturbance Wave-number Affecting Rayleigh-Taylor Instability in Equatorial and Low-latitude Ionosphere
  • 作者:孙志强 ; 方涵先 ; 汪四成 ; 马杰
  • 英文作者:SUN Zhiqiang;FANG Hanxian;WANG Sicheng;MA Jie;Institute of Meteorology and Oceanography, National University of Defense Technology;
  • 关键词:初始扰动波数 ; R-T不稳定性 ; 等离子体泡发生率
  • 英文关键词:Initial disturbance wave-number;;Rayleigh-Taylor instability;;Occurrence rate of plasma bubbles
  • 中文刊名:KJKB
  • 英文刊名:Chinese Journal of Space Science
  • 机构:国防科技大学气象海洋学院;
  • 出版日期:2018-11-15
  • 出版单位:空间科学学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(40505005);; 国家重点实验室专项基金项目共同资助
  • 语种:中文;
  • 页:KJKB201806019
  • 页数:8
  • CN:06
  • ISSN:11-1783/V
  • 分类号:39-46
摘要
在文献[1]推导的基础上将不稳定判据扩展到±30°磁纬之间的低纬地区.为研究初始扰动波数对等离子体泡的影响,分析了λ_(min)随初始扰动波数的变化规律,选择二分法计算λ_(min)=1时的临界波数α_c,并分析α_c随经纬度、太阳活动、季节、地方时以及水平东向电场强度的变化.主要结论如下:α_c随经纬度、季节、太阳活动以及地方时的变化规律和等离子体泡及闪烁活动的规律基本一致,α_c越小,等离子体泡越容易产生;水平东向电场增强有利于等离子体泡形成.α_c的值对人工影响电离层时选择最优扰动条件具有一定的指导意义.
        The sufficient condition of Rayleigh-Taylor instability in equatorial ionosphere has been derived by Ref. [1]. In this paper,the sufficient condition is expanded to low-latitude areas of ±30°magnetic latitude. To study how the initial disturbance wave-number affects the generation of plasma bubble, the variations of λ_(min) as initial disturbance wave-number are analysed. According to the dichotomy method, the critical wave-number ac is attained for λ_(min) = 1. Moreover, the characteristics of ac with geomagnetic latitudes, longitudes, seasons, solar activities, local times and the horizontal eastern electric filed are analyzed. The main conclusions are as follows. The variations of α_c with latitudes, longitudes, seasons, solar activities, and local times are consistent with plasma bubbles and scintillations. The shorter the wave-length is, the easier it would be to generate the Plasma Bubbles(PB). The enhancements of the horizontal eastward electric filed are helpful to initiate PBs. The value of α_c is benificial to decide the best disturbed way in the ionospheric artificial modification.
引文
[1] WANG Sicheng, HUANG Sixun. Sufficient conditions of Rayleigh-Taylor stability and instability in equatorial ionosphere[J]. Appl.Math. Mech., 2016, 37(2):181-192
    [2] KELLEY M C. The Earth's ionosphere[M]. San Diego:Academic Press, 1989
    [3] HAERENDEL G. Theory of equatorial spread F[R].Garching, Germany:Maxplanck-Institut fur Extraterre,1973
    [4] MAKELA J J. A review of imaging low-latitude ionospheric irregularity processes[J]. J. Atmos. Sol.-Terr.Phys., 2006, 68(13):1441-1458
    [5] MARUYAMA T. A diagnostic model for equatorial spread F, 1. Model description and application to electric field and neutral wind effects[J]. J. Geophys. Res. Atmos.,1988, 93(A12):14611-14622
    [6] KELLEY M C, HEELIS R A. The earth's ionosphere:Plasma physics and electrodynamics[M]. 2nd ed. Boston:Academic Press, 2009
    [7] LI G Z, OTSUKA Y, NING B Q, et al. Enhanced ionospheric plasma bubble generation in more active ITCZ[J].Geophys. Res. Lett., 2016, 43(6):2389-2395
    [8] KUDEKI E, BHATTACHARYYA S. Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F[J]. J. Geophys. Res.:Space Phys.,1999, 104(A12):28163-28170
    [9] ROTTGER J. Wave-like structures of large-scale equatorial spread-F irregularities[J]. J. Atmos. Terr. Phys.,1973, 35(6):1195-1196
    [10] HUANG Chaosong, LI Jun. Ionospheric disturbances produced by atmospheric gravity waves in the equatorial Fregion[J]. Acta Geophys. Sin.,1994, 37(6):722-732(黄朝松,李钧.大气重力波产生的大尺度赤道电离层扰动[J].地球物理学报,1994, 37(6):722-732)
    [11] OGAWA T, OTSUKA Y, SHIOKAWA K, et al. Ionospheric disturbances over Indonesia and their possible association with atmospheric gravity waves from the troposphere[J]. J. Meteor. Soc. Jpn., 2006, 84A:327-342
    [12] XIAO Saiguan, XIAO Zuo, SHI Jiankui, et al. Application of the HF Doppler observations to the study of spread-F[J]. Chin. J. Geophys., 2012, 55(4):375-379
    [13] TAKAHASHI H, TAYLOR M J, PAUTET P D, et al.Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the spread F Excampaign[J]. Ann. Geophys., 2009, 27(4):1477-1487
    [14] ZHU Zhengping, GAO Zifeng, LUO Weihua. Observation of planetary wave disturbances and their influence on spread F in low latitude region of China[J]. J. SouthCentral Univ. Nat.:Nat. Sci. Ed., 2016, 35(1):81-88(朱正平,高紫枫,罗伟华.中国低纬地区行星波扰动观测及其对SF的影响[J].中南民族大学学报:自然科学版,2016, 35(1):81-88)
    [15] GAO Ze, FANG Hanxian, WANG Sicheng. A comparative study on the effects of different wavelengths of initial electron density disturbances on triggering spread-F[J].Chin. J.Radio Sci.,2016, 31(5):933-940(高泽,方涵先,汪四成.不同波长初始电子密度扰动对扩展F触发效应对比研究[J].电波科学学报,2016, 31(5):933-940)
    [16] ABDU M A. Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F[J].J. Atmos. Sol.-Terr.Phys., 2001, 63(9):869-884
    [17] BILITZA D, REINISCH B W. International reference ionosphere 2007:Improvements and new parameters[J].Adv. Space Res., 2008, 42(4):599-609
    [18] PICONE J M, HEDIN A E, DROB D P, et al.NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. J. Geophys.Res.:Space Phys., 2002, 107(A12):1468-1483. DOI:10.1029/2002JA009430
    [19] Aarons J. The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence[J]. Space Sci. Rev., 1993, 63(3-4):209-243
    [20] HUANG C Y, BURKE W J, MACHUZAK J S, et al.Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle:toward a global climatology[J].J. Geophys. Res.:Space Phys., 2002, 107(A12):1434
    [21] ADEWALE A O, OYEYEMI E O, ADELOYE A B, et al. A study of L-band scintillations and total electron content at an equatorial station, Lagos, Nigeria[J]. Radio Sci., 2012, 47(2):RS2011