2016年“7.19”京津冀极端降水系统的动热力结构及不稳定条件分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of Dynamic and Thermal Structure and Instability Condition Analysis of the Extreme Precipitation System in Beijing-Tianjin-Hebei on July 19 2016
  • 作者:张景 ; 周玉淑 ; 沈新勇 ; 李小凡
  • 英文作者:ZHANG Jing;ZHOU Yushu;SHEN Xinyong;LI Xiaofan;Key Laboratory of Meteorological Disaster,Ministry Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology;Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS),Institute of Atmospheric Physics,Chinese Academy of Sciences;University of Chinese Academy of Science;School of Earth Sciences,Zhejiang University;
  • 关键词:暴雨 ; 动热力系统 ; 位势不稳定 ; 位势散度
  • 英文关键词:Torrential rain;;Dynamic and thermal structure;;Potential instability;;Potential divergence
  • 中文刊名:DQXK
  • 英文刊名:Chinese Journal of Atmospheric Sciences
  • 机构:南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心;中国科学院大气物理研究所云降水物理与强风暴院重点实验室(LACS);中国科学院大学;浙江大学地球科学学院;
  • 出版日期:2019-07-15
  • 出版单位:大气科学
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金项目41475054、41661144024、41530427;; 河北省科技计划项目17275409D;; 国家重点基础研究发展计划项目2015CB453201~~
  • 语种:中文;
  • 页:DQXK201904016
  • 页数:13
  • CN:04
  • ISSN:11-1768/O4
  • 分类号:229-241
摘要
利用NCEP/NCAR的GFS再分析资料,结合中国气象局气象信息中心提供的全国自动站观测降水量资料、CMORPH卫星反演降水资料、FY2反演降水资料和雷达定量估测降水产品融合的降水资料,对造成2016年7月19~21日北京—天津—河北(以下简称京津冀)地区的极端降水天气系统动热力结构演变以及不稳定条件进行了诊断分析,揭示了京津冀地区上空不同气压层上天气尺度系统的配置,水汽条件,降水发生的垂直运动条件及不稳定层结演变情况。结果表明:(1)500 hPa呈现东高西低的环流形势,与700 hPa低涡和高低空急流相配合,副高北抬阻挡华北地区低涡的东移,导致低涡在京津冀地区停滞是此次降水发生的环流背景;(2)低层的低涡东移发展与中高层正涡度叠加对暴雨发生有重要作用;(3)引用位势散度分析对流不稳定度变化的原因表明,降水区后部的京津冀西南地区,低层的位势不稳定主要由位势散度的水平风垂直切变部分决定,代表水平风垂直切变和大气湿斜压的共同作用,弱降水区以及降水区后方的低层位势散度为负值,有利于该区域位势不稳定加强,强降水区及降水区前方位势散度为正值,抑制了位势不稳定发展。位势散度变化可以通过影响大气稳定度变化进而影响降水落区,位势散度的高值区对应了降水大值区,尤其是700 hPa位势散度对降水落区有很好的指示作用,可以结合位势散度的变化对降水落区进行预估。
        The evolution of dynamic and thermal structure and instability condition of an extreme precipitation system in Beijing-Tianjin-Hebei are analyzed using the NCEP/NCAR Global Forecast System(GFS) data combined with national automatic stations observations of precipitation provided by the Meteorological Information Center of China Meteorological Administration, the CMORPH satellite precipitation data and the fusion of precipitation data from the FY2 precipitation and radar quantitative estimation of precipitation. This study reveals the configuration of weather systems in different air pressure zones over the Beijing-Tianjin-Hebei region. Vertical motion, water vapor condition and unstable stratification evolution during the precipitation process are explored. The results are as follows.(1) The circulation at 500 hPa presented an east-high-west-low pattern, which was coordinated with a low-level vortex at 700 hPa and jet streams in low and high levels. The subtropical high blocked the eastward movement of the low-level vortex in North China, making it stagnant in the Beijing-Tianjin-Hebei region.(2) The development and eastward-moving of the low level vortex was important for the occurrence of the rainstorm.(3) The potential divergence analysis was applied to explore changes in convective instability. Results indicate that in the rear of the precipitation area, lower-level potential instability was mainly determined by vertical wind shear, which reflected the joint effects of vertical wind shear and moist baroclinicity. Lower-level potential divergence was negative in weak precipitation area and behind the precipitation area, which was conducive to regional potential instability. Potential divergence was positive in strong precipitation area and in front of precipitation area, inhibiting the development of potential instability. The change in potential divergence affected precipitation region through affecting the atmospheric stability. The high value region of potential divergence corresponded to high value region of precipitation, especially the 700 hPa potential divergence was a good indicator for precipitation region, which could be estimated by the change of potential divergence at 700 h Pa.
引文
陈明轩,王迎春,肖现,等.2013.北京“7.21”暴雨雨团的发生和传播机理[J].气象学报,71(4):569-592.Chen Mingxuan,Wang Yingchun,Xiao Xian,et al.Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012[J].Acta Meteorologica Sinica(in Chinese),71(4):569-592.doi:10.11676/qxxb2013.053
    丁德平,李英.2009.北京地区的台风降水特征研究[J].气象学报,67(5):864-874.Ding Deping,Li Ying.2009.A study on rainfall features of Beijing associated with typhoons[J].Acta Meteorologica Sinica(in Chinese),67(5):864-874.doi:10.11676/qxxb2009.084
    符娇兰,马学款,陈涛,等.2017.“16·7”华北极端强降水特征及天气学成因分析[J].气象,43(5):528-539.Fu Jiaolan,Ma Xuekuan,Chen Tao,et al.2017.Characteristics and synoptic mechanism of the July 2016 extreme precipitation event in North China[J].Meteorological Monthly(in Chinese),43(5):528-539.doi:10.7519/j.issn.1000-0526.2017.05.002
    雷蕾,孙继松,何娜,等.2017.“7.20”华北特大暴雨过程中低涡发展演变机制研究[J].气象学报,75(5):685-699.Lei Lei,Sun Jisong,He Na,et al.2017.A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016[J].Acta Meteorologica Sinica(in Chinese),75(5):685-699.doi:10.11676/qxxb2017.054
    李娜,冉令坤,周玉淑,等.2013.北京“7.21”暴雨过程中变形场引起的锋生与倾斜涡度发展诊断分析[J].气象学报,71(4):593-605.Li Na,Ran Lingkun,Zhou Yushu,et al.2013.Diagnosis of the frontogenesis and slantwise vorticity development caused by the deformation in the Beijing“7.21”torrential rainfall event[J].Acta Meteorologica Sinica(in Chinese),71(4):593-605.doi:10.11676/qxxb2013.065
    廖晓农,倪允琪,何娜,等.2013.导致“7.21”特大暴雨过程中水汽异常充沛的天气尺度动力过程分析研究[J].气象学报,71(6):997-1011.Liao Xiaonong,Ni Yunqi,He Na,et al.2013.Analysis of the synoptic-scale dynamic process causing the extreme moisture environment in the"7.21"heavy rain case[J].Acta Meteorologica Sinica(in Chinese),71(6):997-1011.doi:10.11676/qxxb2013.081
    刘还珠,王维国,邵明轩,等.2007.西太平洋副热带高压影响下北京区域性暴雨的个例分析[J].大气科学,31(4):727-734.Liu Huanzhu,Wang Weiguo,Shao Mingxuan,et al.2007.A case study of the influence of the western Pacific subtropical high on the torrential rainfall in Beijing area[J].Chinese Journal of Atmospheric Sciences(in Chinese),31(4):727-734.doi:10.3878/j.issn.1006-9895.2007.04.17
    刘璐,冉令坤,周玉淑,等.2015.北京“7.21”暴雨的不稳定性及其触发机制分析[J].大气科学,39(3):583-595.Liu Lu,Ran Lingkun,Zhou Yushu,et al.2015.Analysis on the instability and trigger mechanism of torrential rainfall event in Beijing on 21 July2012[J].Chinese Journal of Atmospheric Sciences(in Chinese),39(3):583-595.doi:10.3878/j.issn.1006-9895.1407.14144
    全美兰,刘海文,朱玉祥,等.2013.高空急流在北京“7.21”暴雨中的动力作用[J].气象学报,71(6):1012-1019.Quan Meilan,Liu Haiwen,Zhu Yuxiang,et al.2013.Study of the dynamic effects of the upper-level jet stream on the Beijing rainstorm of 21 July 2012[J].Acta Meteorologica Sinica(in Chinese),71(6):1012-1019.doi:10.11676/qxxb2013.092
    冉令坤,齐彦斌,郝寿昌.2014.“7.21”暴雨过程动力因子分析和预报研究[J].大气科学,38(1):83-100.Ran Lingkun,Qi Yanbin,Hao Shouchang.2014.Analysis and forecasting of heavy rainfall case on 21 July 2012 with dynamical parameters[J].Chinese Journal of Atmospheric Sciences(in Chinese),38(1):83-100.doi:10.3878/j.issn.1006-9895.2013.12160
    沈艳,潘旸,宇婧婧,等.2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报,36(1):37-46.Shen Yan,Pan Yang,Yu Jingjing,et al.2013.Quality assessment of hourly merged precipitation product over China[J].Transactions Atmospheric Sciences(in Chinese),36(1):37-46.doi:10.3969/j.issn.1674-7097.2013.01.005
    盛春岩,高守亭,史玉光.2012.地形对门头沟一次大暴雨动力作用的数值研究[J].气象学报,70(1):65-77.Sheng Chunyan,Gao Shouting,Shi Yuguang.2012.Numerical simulation of the dynamic effect of the orography on a Mentougou severe torrential rain event[J].Acta Meteorologica Sinica(in Chinese),70(1):65-77.doi:10.11676/qxxb2012.006
    孙建华,张小玲,卫捷,等.2005.20世纪90年代华北大暴雨过程特征的分析研究[J].气候与环境研究,10(3):492-506.Sun Jianhua,Zhang Xiaoling,Wei Jie,et al.2005.A study on severe heavy rainfall in North China during the 1990s[J].Climatic and Environmental Research(in Chinese),10(3):492-506.doi:10.3969/j.issn.1006-9585.2005.03.020
    孙建华,赵思雄,傅慎明,等.2013.2012年7月21日北京特大暴雨的多尺度特征[J].大气科学,37(3):705-718.Sun Jianhua,Zhao Sixiong,Fu Shenming,et al.2013.Multi-scale characteristics of record heavy rainfall over Beijing area on July 21,2012[J].Chinese Journal of Atmospheric Sciences(in Chinese),37(3):705-718.doi:10.3878/j.issn.1006-9895.2013.12202
    孙继松.2005a.气流的垂直分布对地形雨落区的影响[J].高原气象,24(1):62-69.Sun Jisong.2005a.The effects of vertical distribution of the lower level flow on precipitation location[J].Plateau Meteorology(in Chinese),24(1):62-69.doi:10.3321/j.issn:1000-0534.2005.01.010
    孙继松.2005b.北京地区夏季边界层急流的基本特征及形成机理研究[J].大气科学,29(3):445-452.Sun Jisong.2005b.A study of the basic features and mechanism of boundary layer jet in Beijing area[J].Chinese Journal of Atmospheric Sciences(in Chinese),29(3):445-452.doi:10.3878/j.issn.1006-9895.2005.03.12
    孙继松,杨波.2008.地形与城市环流共同作用下的β中尺度暴雨[J].大气科学,32(6):1352-1364.Sun Jisong,Yang Bo.2008.Meso-βscale torrential rain affected by topography and the urban circulation[J].Chinese Journal of Atmospheric Sciences(in Chinese),32(6):1352-1364.doi:10.3878/j.issn.1006-9895.2008.06.10
    孙继松,陶祖钰.2012.强对流天气分析与预报中的若干基本问题[J].气象,38(2):164-173.Sun Jisong,Tao Zuyu.2012.Some essential issues connected with severe convective weather analysis and forecast[J].Meteorological Monthly(in Chinese),38(2):164-173.doi:10.7519/j.issn.1000-0526.2012.2.004
    孙继松,王华,王令,等.2006.城市边界层过程在北京2004年7月10日局地暴雨过程中的作用[J].大气科学,30(2):221-234.Sun Jisong,Wang Hua,Wang Ling,et al.2006.The role of urban boundary layer in local convective torrential rain happening in Beijing on 10 July 2004[J].Chinese Journal of Atmospheric Sciences(in Chinese),30(2):221-234.doi:10.3878/j.issn.1006-9895.2006.02.05
    孙继松,何娜,郭锐,等.2013.多单体雷暴的形变与列车效应传播机制[J].大气科学,37(1):137-148.Sun Jisong,He Na,Guo Rui,et al.2013.The configuration change and train effect mechanism of multi-cell storms[J].Chinese Journal of Atmospheric Sciences(in Chinese),37(1):137-148.doi:10.3878/j.issn.1006-9895.2012.12015
    孙继松,雷蕾,于波,等.2015.近10年北京地区极端暴雨事件的基本特征[J].气象学报,73(4):609-623.Sun Jisong,Lei Lei,Yu Bo,et al.2015.The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area[J].Acta Meteorologica Sinica(in Chinese),73(4):609-623.doi:10.11676/qxxb2015.044
    Sun T K,Tan Z M.2001.Numerical simulation study for the structure and evolution of tropical squall line[J].Adv.Atmos.Sci.,18(1):117-138.doi:10.1007/s00376-001-0008-2
    陶诗言.1980.中国之暴雨[M].北京:科学出版社,1-71.Tao S Y.1980.Heavy Rainstorm in China[M](in Chinese).Beijing:Science Press,1-71
    王两铭,罗会邦.1980.饱和湿空气动力学的基本方程和主要特征[J].气象学报,38(1):44-50.Wang Liangming,Luo Huibang.1980.The basic dynamic equations and the main properties of the saturated moist air[J].Acta Meteorologica Sinica(in Chinese),38(1):44-50.doi:10.11676/qxxb1980.005
    文宝安.1980.物理量计算及其在暴雨分析预报中的应用--水汽通量与水汽通量散度[J].气象,31(6):34-36.Wen Baoan.1980.Physical quantity calculation and application to analysis and forecast of the torrential rain-moisture flux and moisture flux divergence[J].Meteor,31(6):34-36.
    徐洪雄,徐祥德,张胜军,等.2014.台风韦森特对季风水汽流的“转运”效应及其对北京“7·21”暴雨的影响[J].大气科学,38(3):537-550.Xu Hongxiong,Xu Xiangde,Zhang Shengjun,et al.2014.Long-range moisture alteration of a typhoon and its impact on Beijing extreme rainfall[J].Chinese Journal of Atmospheric Sciences(in Chinese),38(3):537-550.doi:10.3878/j.issn.1006-9895.2013.13173
    张文龙,崔晓鹏.2012.近50a华北暴雨研究主要进展[J].暴雨灾害,31(4):384-391.Zhang Wenlong,Cui Xiaopeng.2012.Main progress of torrential rain researches in North China during the past50 years[J].Torrential Rain and Disasters(in Chinese),31(4):384-391.doi:10.3969/j.issn.1004-9045.2012.04.014
    赵思雄,孙建华,鲁蓉,等.2018.“7·20”华北和北京大暴雨过程的分析[J].气象,44(3):351-360.Zhao Sixiong,Sun Jianhua,Lu Rong,et al.2018.Analysis of the 20 July 2016 unusual heavy rainfall in North China and Beijing[J].Meteorological Monthly(in Chinese),44(3):351-360.doi:10.7519/j.issn.1000-0526.2018.03.002
    周围,包云轩,冉令坤,等.2018.一次飑线过程对流稳定度演变的诊断分析[J].大气科学,42(2):339-356.Zhou Wei,Bao Yunxuan,Ran Lingkun,et al.2018.Diagnostic analysis of convective stability evolution during a squall line process[J].Chinese Journal of Atmospheric Sciences(in Chinese),42(2):339-356.doi:10.3878/j.issn.1006-9895.1712.17126