二级杠杆式微牛级微力发生机构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and functional analysis of a micro-Newton force generator
  • 作者:王勇 ; 刘和亮 ; 刘正士 ; 胡珊珊
  • 英文作者:WANG Yong;LIU He-liang;LIU Zheng-shi;HU Shan-shan;School of Mechanical Engineering, Hefei university of technology;
  • 关键词:微牛级微力 ; 柔性铰链 ; 二级杠杆式微力发生机构 ; 有限元分析 ; 优化设计
  • 英文关键词:micro-Newton force;;flexible hinge;;two-stage lever-type micro-force generator;;finite element analysis;;optimization design
  • 中文刊名:GXJM
  • 英文刊名:Optics and Precision Engineering
  • 机构:合肥工业大学机械工程学院;
  • 出版日期:2018-10-15
  • 出版单位:光学精密工程
  • 年:2018
  • 期:v.26
  • 基金:国家自然科学基金资助项目(No.41076061,No.40876052)
  • 语种:中文;
  • 页:GXJM201810021
  • 页数:9
  • CN:10
  • ISSN:22-1198/TH
  • 分类号:189-197
摘要
针对力传感器标定系统难以精确加载微牛级微力的现状,设计了一种二级杠杆式微力发生机构。首先,在比较了常用柔性铰链精度性能的基础上,介绍了微力发生机构的工作原理。然后,在考虑杆件变形和柔性铰链中心偏转的基础上,分析了各级杠杆和各柔性铰链的受力和能量传递情况,推导了二级杠杆式微力发生机构力缩小倍数的理论计算方法,并以实现某一力缩小倍数为设计目标,据此提出了微力发生机构的优化设计方法。接着,进行有限元仿真分析,得到了不同输入力下的力值响应特性。最后搭建了微力发生机构的性能实验测试平台。结果表明,有限元分析、实验结果与理论力值间的最大误差分别为5.501%和7.391%,实验非线性误差为2.89%,可实现0~500μN的微力加载。认为力缩小倍数满足设计要求,验证了采用该优化设计方法准确设计二级杠杆式力柔顺机构、提高微力加载精度的有效性。
        A two-stage lever-type micro-force generator was designed to address the challenges in the calibration system of force sensor to provide accurate micro loads. Initially, the working principle of the micro-force generator was introduced based on the performance comparison among general flexure hinges. Next, the force and energy transmissions were analyzed and a theoretical calculation method to evaluate the minification ratio K was deduced by taking into consideration the deformation of the lever and the offset of the flexure hinge's rotation. To accomplish the aim of achieving a certain minification ratio, the optimization design of the micro-force generator was proposed. Moreover, the response characteristics under different input forces were obtained by performing finite element simulation. Subsequently, a test platform was fabricated to measure the power performance of the micro-force generator. The results show that the largest error between the finite element analysis(FEA) and the theoretical analysis result is 5.501%, whereas that between the experimental result and the theoretical analysis result is 7.391%, the linearity is 2.89%, and loading range of up to 500 μN is reached. The results also indicate that the minification ratio K meets the design requirements and verify the validity of applying the optimization method to design two-stage lever-type micro-force generator and improve the accuracy of micro-Newton loads.
引文
[1] HU S, WANG Y, LIU Z, et al.. Exploration of measurement principle of a three-dimensional current sensor for measuring the upwelling[J]. Ocean Engineering, 2016, 127:48-57.
    [2] LAW J, SUN W, WU Z, et al.. A low-cost reusable micro-newton scale micro-thruster[C]. International Conference on Solid-State Sensors, Actuators and Microsystems. 2017:2055-2058.
    [3] LIN G, PALMER R E,PISTER K S,et al..Miniature heart cell force transducer system implemented in MEMS technology[J]IEEE Transactions on Biomedical Engineering, 2001,48(9): 996-1006.
    [4] XIE H,VITARD J,HALIYO S, et al..Enhanced accuracy of force application for AFM nanomanipulation using nonlinear calibra-tion of the optical lever[J].IEEE Sensors Journal, 2008, 8(8):1478-1485.
    [5] ALVO S,LAMBERT P, GAUTHIER M,et al..A van der waals force-based adhesion model for micromanipulation[J]. Journal of Adhesion Science and Technology, Special Issue on Adhesion in MEMS/NEMS, 2010, 15-1(24):2415-2428.
    [6] HALIYO S, DIONNET F, RGNIER S. Controlled rolling of micro objects for autonomous micro manipulation[J]. International Journal of Micromechatronics, 2006,3(2):75-101.
    [7] JIN W, MOTE C D. On the calibration of multicomponent microforce sensors[J]. Microelectromechanical Systems Journal of, 1998, 7(2):156-163.
    [8] MOHAND OUSAID A, HALIYO S, REGNIER S, et al..Micro-Force sensor by active control of a comb-drive[J]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2013,8212:612-617.
    [9] YUVAL C,SHAY K,DANIEL L,et al..Electrostatic parallel plate actuators whose moving elements are driven only by electrostatic force and methods useful in conjunction therewith [P].US:EP2768241 A1.2014.
    [10] NEWELL D B,KRAMAR J A,PRATT J R, et al..The NIST microforce realization and measurement project[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(2):508-511.
    [11] PRATT J R, KRAMAR J A. Si Realization of small forces using an electrostatic force balance[C].XVIII IMEKD World Congress on Metro logy for a Sustainable Development,Rio de Janeiro,Brazil, 2006:109.
    [12] LI X, SU D, ZHANG Z. A novel technique of microforce sensing and loading[J]. Sensors & Actuators A Physical, 2009, 153(1):13-23.
    [13] 王相龙.传感器原位标定系统稳定加载关键技术研究[D].吉林大学, 2015.WANG X L.Research on Key Technology Based on Stable Loading for the In-situ Calibration System of the Sensor[D].Jilin:Jilin University, 2015. (in Chinese)
    [14] SUN Z, HAO L, LI S, et al.. A PVDF micro-force sensor based on inverse-model algorithm and its applications[C]. IEEE International Conference on Information and Automation, IEEE, 2011:801-806.
    [15] 郑红梅, 刘正士, 王勇. 机器人六维腕力传感器标定方法和标定装置的研究[J]. 计量学报, 2005, 26(1):43-45.ZHENG H M, LIU ZH SH, WANG Y.Study on the method of dynamic characteristic calibration of the 6-aixs wrist force sensor for robot[J]. Acta Metrologica Sinica, 2005, 26(1):43-45. (in Chinese)
    [16] JABBOUR Z L,YANIV S L. The kilogram and the measurements of mass and force[J]. J. Res. Nat. Inst. Stand. Technol, 2001,106(1): 25–46.
    [17] 黄斌. 基于气浮原理的多维力标定方法及系统的研究[D]. 合肥工业大学, 2012.HUANG B.Multi-axis force calibration method and system based on the flotation principle[D]. Hefei University of Technology, 2012. (in Chinese)
    [18] 卢倩, 黄卫清, 王寅,等. 深切口椭圆柔性铰链优化设计[J]. 光学 精密工程, 2015, 23(1):206-215.LU Q,HUANG W Q,WANG Y, et al..Optimaizatrion design of deep-notch elliptical flexure hinges[J].Opt. Precision Eng., 2015, 23(1):206-215.(in Chinese)
    [19] 付锦江, 颜昌翔,等. 椭圆弧柔性铰链刚度简化计算及优化设计[J]. 光学 精密工程, 2016,7(24),1703-1710.FU J J, YAN CH X, et al..Stiffness calculation and optimal design of elliptical flexure hinges[J].Opt. Precision Eng., 2016,7(24),1703-1710. (in Chinese)
    [20] 曹毅, 刘凯, 单春成,等. 抗拉柔性铰链的理论建模及有限元分析[J]. 光学 精密工程, 2016, 24(1):119-125.CAO Y, LIU K, SHAN CH CH, et al..Theory modeling and finite element analysis of tensile flexure hinge[J].Opt. Precision Eng., 2016, 24(1):119-125. (in Chinese)
    [21] 左行勇, 刘晓明,等. 三种形状柔性铰链转动刚度的计算与分析[J]. 仪器仪表学报, 2006, 27(12):1725-1728.ZUO X Y, LIU X M, et al..Calculation and analysis of rotational stiffness for three types of flexure hinges[J].Chinese Journal of Scientific Instrument, 2006, 27(12):1725-1728. (in Chinese)
    [22] 蔡雪, 赵美蓉, 郑叶龙,等. 用于10-6 N~10-5 N微力测量的柔性铰链机构设计[J]. 传感技术学报, 2014(11):1451-1456.CAI X , ZHAO M R, ZHENG Y L, et al.. Design of flexure hinges mechanism for 10-6 N~10-5 N micro force measurement[J]. Chinese Journal of Sensors and Actuators, 2014(11):1451-1456. (in Chinese)
    [23] 刘敏, 张宪民. 基于类V型柔性铰链的微位移放大机构[J]. 光学 精密工程, 2017, 25(4):999-1008.LIU MIN, ZHANG X M, Micro-displacement amplifier based on quasi-V-shaped flexure hinge[J].Opt. Precision Eng., 2017, 25(4):999-1008. (in Chinese)
    [24] PAROS J. How to design flexure hinges[J]. Mach Des, 1965, 37:151-156.
    [25] WU Y, ZHOU Z. Design calculations for flexure hinges[J]. Review of Scientific Instruments, 2002, 73(8):3101-3106.