牵引与桥梁上拱激励下城轨列车动力学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Dynamic of Urban Rail Vehicle of Variable Speed and Long-wave Excitation Conditions
  • 作者:杨建伟 ; 刘传 ; 王金海 ; 孙冉 ; 祝赫锴
  • 英文作者:YANG Jianwei;LIU Chuan;WANG Jinhai;SUN Ran;ZHU Hekai;Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles,Beijing University of Civil Engineering and Architecture;School of Mechanical-electronic and Automobile Engineering,Beijing University of Civil Engineering and Architecture;School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University;
  • 关键词:城轨列车 ; 变速工况 ; 徐变上拱 ; 动力学性能
  • 英文关键词:urban rail vehicle;;variable speed condition;;concrete creep;;dynamic performance
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:北京建筑大学城市轨道交通车辆服役性能保障北京市重点实验室;北京建筑大学机电与车辆工程学院;北京交通大学机械与电子控制工程学院;
  • 出版日期:2018-11-16 16:06
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家重点研发计划课题资助项目(2016YFB1200402)
  • 语种:中文;
  • 页:JXXB201904017
  • 页数:8
  • CN:04
  • ISSN:11-2187/TH
  • 分类号:135-142
摘要
城轨列车的实时变速工况是极为普遍的运行状态,若仅以匀速工况替代,无法得到贴近实际的研究结论。为此,提出一种新的考虑内外耦合激励的动力学模型。建立单节车体模型及编组城轨列车模型,综合考虑牵引工况以及城轨列车通过高架线路时的桥梁徐变上拱长波不平顺,研究在该内外耦合激励下的车辆动力学性能。基于微元法思想,计算得到城轨列车牵引工况下的电机转矩及基本阻力转矩与运行时间的关系,得到合理的综合工况下的运行状态。研究结果表明,在变速工况下车辆的轮对磨耗数、垂向平稳性指标及轮重减载率均有所上升;在桥梁长波不平顺激励下,车辆垂向平稳性指标有所下降、轮重减载率升高,而对车辆横向平稳性指标影响较小。
        Real-time variable speed conditions of urban rail trains are extremely common operating conditions, if only to uniform conditions instead, it cannot get a satisfactory conclusion. To this end, a new dynamic model considering coupled internal and external excitation is proposed. Based on the traction condition and the bridge creep on the elevated rail line, the vehicle dynamics performance under the coupling of the internal and external are studied. Based on the idea of micro-element method, the relationship between the torque and the running torque of the traction condition of the city rail is calculated, and the running condition is obtained under the reasonable comprehensive condition. The results show that the number of wheel wear and the vertical stability of the vehicle are increasing under the variable speed condition. Under the long wave irregularity of the bridge, the vertical stability index of the vehicle decreases, while the lateral stability Indicators have less impact.
引文
[1]GARCIA J F,OLAIZOLA X,MARTIN L M,et al.Theoretical comparison between different configurations of radial and conventional bogies[J].Foregin Roling Stock,2000,33(4):233-259.
    [2]POLACH O.Curving and stability optimization of locomotive bogies using interconnected wheelsets[J].Vehicle System Dynamics Supplement,2004,41:53-62.
    [3]孙晨龙,周素霞,秦震,等.车间纵向减振器特性参数对高速动车组动力学性能的影响研究[J].机械工程学报,2017,53(24):170-176.SUN Chenlong,ZHOU Suxia,QIN zhen,et al.Research on influence of the characteristic parameter of inter-vehicle longitudinal damper on dynamic performance of high speed EMUs[J].Journal of Mechanical Engineering,2017,53(24):170-176.
    [4]李慧乐,夏禾,张楠,等.基于车桥耦合动力分析的钢桥疲劳损伤与剩余寿命评估[J].铁道学报,2017,39(1):104-110.LI Huile,XIA He,ZHANG Nan,et al.Assessment of fatigue damage and remaining life of stell bridges based on train-bridge coupling dynamic analysis[J].Journal of the China Railway Society,2017,39(1):104-110.
    [5]李永乐,强士中,廖海黎.风-车-桥系统空间耦合振动研究[J].土木工程学报,2005,38(7):61-64.LI Yongle,QIANG Shizhong,LIAO Haili.3-D coupled vibration of wind-vehicle-bridge system[J].China Civil Engineering Journal,2005,38(7):61-64.
    [6]曹亚博.重载货车系统动力学建模及仿真分析[D].成都:西南交通大学,2015.CAO Yabo,Dynamics modeling of heavy haul wagon system and simulation analysis[D].Chengdu:Southwest Jiaotong University,2015.
    [7]秦震,周素霞,孙晨龙,等.减振器特性参数对高速动车组临界速度的影响研究[J].机械工程学报,2017,53(6):138-144.QIN Zhen,ZHOU Suxia,SUN Chenlong,et al.Influence of hydraulic shock absorber characteristic parameters on the critical speed of high-speed trains[J].Journal of Mechanical Engineering,2017,53(6):138-144.
    [8]曾京,邬平波.减振器橡胶节点刚度对铁道客车系统临界速度的影响[J].中国铁道科学,2008,29(2):94-98.ZENG Jing,WU Pingbo.Influence of the damper rubber joint stiffness on the critical speed of railway passenger car system[J].China Railway Science,2008,29(2):94-98.
    [9]王月明.城市轨道交通列车制动[M].北京:科学出版社,2014.WANG Yueming.Braking performances of urban rail trains[M].Beijing:Science Press,2014.
    [10]KALKER J J.Survey of wheel-rail rolling contact theory[J].Vehicle System Dynamics,1979,5:317-358.
    [11]何越磊,李再帏,盛春玲,等.不同地铁线路条件下轨道谱的特性分析[J].铁道工程学报,2014,31(7):99-104.HE Yuelei,LI Zaiwei,SHENG Chunling,et al.Characteristic analysis of track spectrums of different subway line conditions[J].Journal of Railway Engineering Society,2014,31(7):99-104.
    [12]刘沐宇,卢志芳.混凝土桥梁时变性和不确定性下的收缩徐变分析[J].华中科技大学学报,2011,39(10):116-120.LIU Muyu,LU Zhifang.Shrinkage creep analysis of concrete bridges with time variation and uncertainty considered[J].Journal Huazhong Univ.of Sci,&Tech,2011,39(10):116-120.
    [13]向俊,赫丹,曾京.高速列车作用下不同类型无砟轨道振动响应分析[J].机械工程学报,2010,46(16):29-35.XIANG Jun,HE Dan,ZENG Jing.Investigation on dynamic responses of different type ballastless tracks under high-speed train[J].Journal of Mechanical Engineering,2010,46(16):29-35.
    [14]戚壮,李芾,黄运华,等.高速动车组空气弹簧垂向动态特性研究[J].机械工程学报,2015,51(10):129-136.QI Zhuang,LI Fu,HUANG Yunhua,et al.Study on the vertical dynamic characteristics of air spring used in high-speed EMU[J].Journal of Mechanical Engineering,2015,51(10):129-136.