预制裂隙类岩石材料板动态压缩破坏试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic failure of manufactured similar rock plate containing a single fissure
  • 作者:王奇智 ; 吴帮标 ; 刘丰 ; 夏开文 ; 王伟
  • 英文作者:WANG Qizhi;WU Bangbiao;LIU Feng;XIA Kaiwen;WANG Wei;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;School of Civil Engineering,Tianjin University;School of Civil Engineering,Shijiazhuang Tiedao University;
  • 关键词:岩石力学 ; 类岩石材料 ; 预制裂纹 ; 动态破坏 ; 分离式霍普金森压杆 ; 数字图像相关
  • 英文关键词:rock mechanics;;simulated rock mass;;pre-existing flaw;;dynamic fracture;;split Hopkinson pressure bar(SHPB);;digital image correlation(DIC)
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:天津大学水利工程仿真与安全国家重点实验室;天津大学建筑工程学院;石家庄铁道大学土木工程学院;
  • 出版日期:2018-08-27 14:31
  • 出版单位:岩石力学与工程学报
  • 年:2018
  • 期:v.37;No.344
  • 基金:国家自然科学基金青年基金项目(51709200,11602165);; 河北省自然科学基金杰出青年基金项目(E2015210040)~~
  • 语种:中文;
  • 页:YSLX201811007
  • 页数:9
  • CN:11
  • ISSN:42-1397/O3
  • 分类号:70-78
摘要
采用水泥砂浆制作类岩石样品,预制与加载方向成0°~90°夹角裂隙,以霍普金森杆(SHPB)为动力加载系统,结合数字图像相关(DIC)技术,分析多加载率、单裂纹多角度条件下样品失稳破坏特征。结果表明,含预制裂纹样品破坏形式主要以X型拉剪破坏为主,其强度随加载率的增大而增大,裂纹角度变化也对样品强度有一定影响。同时也捕捉了预制裂纹的初始应力场、裂纹萌生起裂全过程,并分析不同加载率、不同节理角度下复合裂纹动态起裂韧度与经典准则的相关性。试验成果对分析含节理裂隙的真实岩体破坏失稳机制有重要的参考价值。
        A cement mortar plate containing a single flaw was used to simulate the rock mass. The flaw in each sample has an angle with respect to the loading direction from 0° to 90°. A modified split Hopkinson pressure bar(SHPB) system was used to carry out the dynamic compression test to the plate specimen and a high-speed imaging system was used to record the crack propagation under different loading rates. The surface of the plate specimen was coated with a speckle pattern and the digital image correlation(DIC) technique was adopted to analyze the characteristics of the fracturing process. The testing results indicate that the failure of the cemented mortar plate with a single flaw is mainly the X type and the strength of the specimen increases with the loading rate under a given orientation of flaw. The orientation of the flaw is the main factor influencing the strength of specimens. The shear cracks and tensile cracks were observed to be the dominant crack types. The crack propagation path,stress field,crack initiation and propagation process were also analyzed with the DIC method. The correlation between the dynamic initiation fracture toughness and the classical criterion of mixed cracks under different loading rates and different joint angles was analyzed.
引文
[1]钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程学报,2012,31(10):1 945–1 956.(QIAN Qihu. Challenges faced byundergroundprojectsconstructionsafetyandcountermeasures[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1 945–1 956.(in Chinese))
    [2]DOAN M L,GARY G. Rock pulverization at high strain rate near the San Andreas fault[J]. Nature Geoscience,2009,2(2):709.
    [3]LI H B,LI T J,ZHAO J,et al. Study on strength of rock material underdynamictriaxialcompressiveloadsbasedonslidingcrack model[J]. Key Engineering Materials,2000,183–187:67–72.
    [4]TENG C K,LI S Y,HE X S,et al. An experiment study on dynamic fractureprocessofthecracksysteminrocks[J].ChineseJournalof Geophysics,2001,44(Z1):136–145.
    [5]刘远明,夏才初.共面闭合非贯通节理岩体贯通机制和破坏强度准则研究[J].岩石力学与工程学报,2006,25(10):2 086–2 091.(LIU Yuanming,XIA Caichu.Study on fracture mechanism and criteria of failure strength of rock mass containing coplanar close discontinuous jointsunderdirectshear[J].ChineseJournalofRockMechanicsand Engineering,2006,25(10):2 086–2 091.(in Chinese))
    [6]LEIJ,WANGYS,GROSSD.Analysisofdynamicinteraction betweenaninclusionandanearbymovingcrackbyBEM[J].Engineering Analysis with Boundary Elements,2005,29(8):802–813.
    [7]LEI J,WANG Y S,GROSS D. Two-dimensional numerical simulation ofcrackkinkingfromaninterfaceunderdynamicloadingbytime domainboundaryelementmethod[J].InternationalJournalofSolids and Structures,2007,44(3/4):996–1 012.
    [8]LEI J,WANG Y S,HUANG Y F,et al. Dynamic crack propagation in matrix involving inclusions by a time-domain BEM[J]. Engineering Analysis with Boundary Elements,2012,36(5):651–657.
    [9]潘鹏志,丁梧秀,冯夏庭,等.预制裂纹几何与材料属性对岩石裂纹扩展的影响研究[J].岩石力学与工程学报,2008,27(9):1882–1 889.(PAN Pengzhi,DING Wuxiu,FENG Xiating,et al. Research on influence of pre-existing crack geometrical and material properties on crack propagation in rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1 882–1 889.((in Chinese))
    [10]ALAM M R,SWAMIDAS A S J,MUNASWAMY K. Experimental and numerical studies on dynamic crack growth in layered slate rock underwedgeimpactloads:partI—planestrainproblem[J].Fatigue and Fracture of Engineering Materials and Structures,2007,30(9):844–862.
    [11]ALAM M R,MUNASWAMY K,SWAMIDAS A S J. Experimental and numerical studies on dynamic crack growth in layered slate rock underwedgeimpactloads:partII—non-planestrainproblem[J].Fatigue and Fracture of Engineering Materials and Structures,2007,30(10):915–931.
    [12]DING W X,FENG X T. Study on the dynamic fracture process and fracturelawofcracksrockunderthecoupledmechanicalhydraulic-chemicalenvironment[C]//InternationalConferenceon HeterogeneousMaterialMechanics(ICHMM).[S.l.]:[s.n.],2008,2008:1 052–1 056.
    [13]ZHU Z D,NI X H,WANG W,et al. Dynamic experimental study on rockmeso-cracksgrowthbydigitalimageprocessingtechnique[J].Journal of Central South University of Technology,2008,15(Supp.2):114–120.
    [14]赵永红.受单轴压缩大理岩填充割缝周围的微裂纹生长[J].岩石力学与工程学报,2004,23(15):2 504–2 509.(ZHAO Yonghong.Mini-crack development from a cemented fracture in marble specimen underuniaxialcompression[J].ChineseJournalofRockMechanics and Engineering,2004,23(15):2 504–2 509.(in Chinese))
    [15]张盛,王启智,梁亚磊.裂缝长度对岩石动态断裂韧度测试值影响的研究[J].岩石力学与工程学报,2009,28(8):1691–1696.(ZHANG Sheng,WANG Qizhi,LIANG Yalei. Research on influence ofcracklengthontestvaluesofrockdynamicfracturetoughness[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1 691–1 696.(in Chinese))
    [16]WANG Q Z,ZHANG S,XIE H P. Rock dynamic fracture toughness testedwithholed-crackedflattenedbraziliandiscsdiametrically impactedbyshpbanditssizeeffect[J].ExperimentalMechanics,2010,50(7):877–885.
    [17]DAIF,CHENR,IQBALMJ,etal.Dynamiccrackedchevron notchedBraziliandiscmethodformeasuringrockfracture parameters[J].InternationalJournalofRockMechanicsandMining Sciences,2010,47(4):606–613.
    [18]DAIF,XIAK,ZHENGH,etal.Determinationofdynamicrock Mode-Ifractureparametersusingcrackedchevronnotched semi-circularbendspecimen[J].EngineeringFractureMechanics,2011,78(15):2 633–2 644.
    [19]DAI F,XIA K. Characterization of dynamic rock fracture parameters usingNotchedSemi-CircularBend(NSCB)methodandCracked ChevronNotchedBrazilianDisc(CCNBD)method[C]//The12th ISRM International Congress on Rock Mechanics.[S.l.]:[s.n.],2011,17–21.
    [20]WANG Q Z,FENG F,NI M,et al. Measurement of mode I and mode IIrockdynamicfracturetoughnesswithcrackedstraightthrough flattenedBraziliandiscimpactedbysplitHopkinsonpressurebar[J].Engineering Fracture Mechanics,2011,78(12):2 455–2 469.
    [21]WANGQZ,YANGJR,ZHANGCG,etal.Determinationof dynamic crack initiation and propagation toughness of a rock using a hybridexperimental-numericalapproach[J].JournalofEngineering Mechanics,2016,142(12):04016097.
    [22]TANGCA,YANGYF.Crackbranchingmechanismofrock-like quasi-brittlematerialsunderdynamicstress[J].JournalofCentral South University,2012,19(11):3 273–3 284.
    [23]ZOU C,WONG L N Y. Experimental studies on cracking processes andfailureinmarbleunderdynamicloading[J].Engineering Geology,2014,173(5):19–31.
    [24]ZOUC,WONGLNY,JINJL,etal.Differentmechanicaland crackingbehaviorsofsingle-flawedbrittlegypsumspecimensunder dynamicandquasi-staticloadings[J].EngineeringGeology,2016,201(4):71–84.
    [25]GAOG,HUANGS,XIAK,etal.Applicationofdigitalimage correlation(dic)indynamicnotchedsemi-circularbend(NSCB)tests[J]. Experimental Mechanics,2015,55(1):95–104.
    [26]GAOGY,ZHOUJ,LIZ.Experimentalinvestigationofdynamic fracturebehaviorsofpolymethylmethacrylate[J].Macromolecular Symposia,2016,365(1):180–190.
    [27]GAO G,YAO W,XIA K,et al. Investigation of the rate dependence offracturepropagationinrocksusingdigitalimagecorrelation(DIC)method[J]. Engineering Fracture Mechanics,2015,138(1):146–155.
    [28]DAI X,HE X,SHAO X,et al. Real-time 3D digital image correlation methodanditsapplicationinhumanpulsemonitoring[J].Applied Optics,2016,55(4):696–704.
    [29]LIU F,ZHENG H,DU X. Hybrid analytical and mls-based nmm for thedeterminationofgeneralizedstressintensityfactors[J].Mathematical Problems in Engineering,2015,(1):1–9.
    [30]SIHGC.Strain-energy-densityfactorappliedtomixedmodecrack problems[J].InternationalJournalofFracture,1974,10(3):305–321.