竹材表面ZnO超疏水涂层的制备及表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characteristics of super-hydrophobic layer of ZnO nanoparticles on bamboo surface
  • 作者:杨阳 ; 张爱文 ; 陈志鹏 ; 李泽 ; 吴波 ; 卢梦婷 ; 方凯丽 ; 何文
  • 英文作者:YANG Yang;ZHANG Aiwen;CHEN Zhipeng;LI Ze;WU Bo;LU Mengting;FANG Kaili;HE Wen;College of Materials Science and Engineering,Nanjing Forestry University;Huayu Bamboo Industry Co.Ltd.;
  • 关键词:竹材 ; ZnO纳米颗粒 ; 传统一步法 ; 晶核辅助生长法 ; 超疏水层
  • 英文关键词:bamboo;;zinc oxide nanoparticles;;traditional one-step method;;crystal-assisted growth method;;super-hydrophobic layer
  • 中文刊名:LKKF
  • 英文刊名:Journal of Forestry Engineering
  • 机构:南京林业大学材料科学与工程学院;福建华宇竹业集团有限公司;
  • 出版日期:2019-05-25
  • 出版单位:林业工程学报
  • 年:2019
  • 期:v.4;No.21
  • 基金:国家自然基金青年基金(31700488);; “十三五”国家重点研发计划(2017YFD0600801)
  • 语种:中文;
  • 页:LKKF201903008
  • 页数:6
  • CN:03
  • ISSN:32-1862/S
  • 分类号:52-57
摘要
基于"荷叶效应"仿生原理,首先采用传统一步法和晶核辅助生长法合成ZnO纳米颗粒,再通过层层自组装法分别在竹材表面构建2种不同的微纳结构,并用低表面能物质十七氟癸基三甲氧基硅烷进行修饰,获得超疏水层,最后对其性能进行表征。扫描电子显微镜和原子力显微镜观察显示,传统一步法制备的ZnO纳米颗粒呈球形结构,粒径为200~400 nm,在竹材表面相对分散,粗糙度为18.6;而晶核辅助生长法制备的ZnO纳米颗粒呈纺锤形,粒径为100~300 nm,且具有明显的分层结构,粗糙度为28.9。水静态接触角测试结果显示,随着自组装次数增加,接触角先增加后减少,当自组装次数达到20次时,传统一步法和晶核辅助生长法制备的ZnO纳米颗粒构建的微纳层的水静态接触角达到最大值,分别为142.4°和152.4°,后者达到了超疏水的要求。酸碱试剂浸渍评价纳米颗粒的耐久性结果表明,2种方法制备的ZnO纳米颗粒在强酸强碱溶液中浸泡后,接触角均无明显变化,传统一步法制备的竹材接触角在pH 2的盐酸和pH 12的氢氧化钠溶液中分别浸渍12 h后,接触角仍保持在141.1°和141.7°;晶核辅助生长法制备的竹材在pH 2的盐酸和pH 12的氢氧化钠溶液中分别浸渍12 h后,接触角仍保持在150.2°和150.8°。耐磨性测试结果表明,2种方法制备的疏水竹材具有较好的耐磨性,在30cm的线性摩擦试验后,传统一步法制备的竹材接触角仍在142°左右,晶核辅助生长法制备的竹材接触角在150°左右。X射线衍射测试结果显示,2种方法制备的疏水涂层均具有明显的ZnO晶体的衍射特征峰。2种竹材样品在XRD曲线上均出现了32.45°,34.76°,36.82°和47.65°等一系列新衍射峰,而且这些衍射峰与标准的纤锌矿ZnO的XRD卡片(JCPDS,36-1451)一致。
        Based on the bionic principle of lotus effect,firstly,zinc oxide( ZnO) nanoparticles were synthesized by the traditional one-step method and crystal-assisted growth method,respecticely. Secondly,the superhydrophobic layers were constructed on bamboo surface by layer-by-layer method. Then,the microstructure,roughness,static contact angle and resistance of acid-base at room temperature of bamboo specimens were examined. The scanning electron microscope observation indicated that the ZnO nanoparticles prepared by the traditional one-step method showed a spherical structure with a diameter between 200 nm and 400 nm,while the ZnO nanoparticles fabricated by the crystal-assisted growth method showed a spindle-shaped structure with a diameter between 100 nm and 300 nm. The measurement of atomic force microscope indicated that the roughness of ZnO nanoparticle layer prepared by the traditional one-step method was 18.6,which was lower than that of the crystal-assisted growth method. The water static contact angle test results showed that the contact angle of bamboo firstly increased and then decreased with the number of self-assembly processes increased. When the number of self-assembly processes was 20,the static contact angles were up to the maximum. The contact angle of ZnO nanoparticle layer prepared by the traditional one-step method was about 142.4°,while the contact angle of ZnO nanoparticle layer prepared by the crystal-assisted growth method was around 152.4°,which reached the requirement of super-hydrophobicity. The contact angles after soaking in strong acid and alkali solution for 12 h had no significant changes,which meant that the two ZnO nanoparticle layers had strong resistance to acid and alkali. The contact angle of bamboo prepared by the traditional one-step method remained at 141. 1° and 141.7°,while the other remained at 150.2° and 150.8°. The abrasion resistance test indicated that the super-hydrophobic bamboo prepared by the two methods had good wear resistance. The contact angle of bamboo prepared by the traditional one-step was still about 142° after 30 cm of linear friction experiment,while the contact angel of bamboo prepared by the crystal-assisted growth method was about 150°.The X-ray diffraction detection proved that the diffraction peaks of ZnO crystals existed on the ZnO nanoparticle layers prepared by both methods. The bamboo prepared by both methods showed a series of new diffraction peaks such as 32.45°,34.76°,36.82° and 47.65°,which were consistent with the XRD card of standard wurtzite ZnO( JCPDS,36-1451).
引文
[1]潘毅,李家佳,李玲娇,等.现代竹材在建筑结构中的应用现状[J].土木建筑与环境工程,2011,33(S2):115-118.PAN Y,LI J J,LI L J,et al.Application of the modern bamboo in building structure[J].Journal of Civil,Architectural&Environmental Engineering,2011,33(S2):115-118.
    [2]张融,张禄晟,费本华,等.硅烷改性丙烯酸酯乳液涂饰竹集成材的防水防霉性能[J].林产工业,2013,40(6):57-59.DOI:10.3969/j.issn.1001-5299.2013.06.016.ZHANG R,ZHANG L S,FEI B H,et al.Antimold and waterproof properties of the bamboo glulam painted with silane modified acrylate latex[J].China Forest Products Industry,2013,40(6):57-59.
    [3]崔晓松,姚希,刘海华,等.超疏水表面微纳结构设计与制备及润湿行为调控(Ⅰ)[J].中国材料进展,2009,28(12):41-52.CUI X S,YAO X,LIU H H,et al.Superhydrophobic surfaces:design and fabrication of micro/nanomicrotextures and tuning of wetting behavior[J].Materials China,2009,28(12):41-52.
    [4]常焕君,刘思辰,王小青,等.木材表面纳米TiO2疏水薄膜的构建及抗光变色性能[J].南京林业大学学报(自然科学版),2015,39(4):116-120.DOI:10.3969/j.issn.1000-2006.2015.04.020.CHANG H J,LIU S C,WANG X Q,et al.Construction of hydrophobic nano-TiO2 on wood surface and analysis of its anti-photodiscoloration performance[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2015,39(4):116-120.
    [5]GAO L K,LU Y,ZHAN X X,et al.A robust,anti-acid,and high-temperature-humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane[J].Surface and Coatings Technology,2015,262:33-39.DOI:10.1016/j.surfcoat.2014.12.005.
    [6]WANG S L,SHI J Y,LIU C Y,et al.Fabrication of a superhydrophobic surface on a wood substrate[J].Applied Surface Science,2011,257(22):9362-9365.DOI:10.1016/j.apsusc.2011.05.089.
    [7]LIU C Y,WANG S L,SHI J Y,et al.Fabrication of superhydrophobic wood surfaces via a solution-immersion process[J].Applied Surface Science,2011,258(2):761-765.DOI:10.1016/j.apsusc.2011.08.077.
    [8]LI J P,LU Y,WU Z X,et al.Durable,self-cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane[J].Ceramics International,2016,42(8):9621-9629.DOI:10.1016/j.ceramint.2016.03.047.
    [9]孙晓玲.有机无机纳米超疏水材料的制备及其性能研究[D].济南:山东轻工业学院,2011.SUN X L.Study on fabrication and properties of organic/inorganic super-hydrophobic nanoparticles[D].Jinan:Shandong Institute of Light Technology,2011.
    [10]曹坤丽,吴燕,曹福才,等.纳米TiO2/硬脂酸超疏水材料的制备与表征[J].林业工程学报,2017,2(5):31-35.DOI:10.13360/j.issn.2096-1359.2017.05.006.CAO K L,WU Y,CAO F C,et al.Preparation and characterization of nano TiO2/stearic acid superhydrophobic material[J].Journal of Forestry Engineering,2017,2(5):31-35.
    [11]FU Y C,YU H P,SUN Q F,et al.Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment[J].Holzforschung,2012,66(6):739-744.DOI:10.1515/hf-2011-0261.
    [12]李景鹏.竹材表面仿生功能构建及形成机理研究[D].杭州:浙江农林大学,2015.LI J P.Study on bio-inspired functions and formation mechanism constructured on the bamboo surface[D].Hangzhou:Zhejiang A&F University,2015.
    [13]王会杰.超疏水功能界面的制备及应用[D].合肥:中国科学技术大学,2015.WANG H J.Preparation and application of superhydrophobic functional interfaces[D].Hefei:University of Science and Technology of China,2015.
    [14]田根林,余雁,王戈,等.竹材表面超疏水改性的初步研究[J].北京林业大学学报,2010,32(3):166-169.DOI:10.13332/j.1000-1522.2010.03.039.TIAN G L,YU Y,WANG G,et al.Preliminary study on superhydrophobic modification of bamboo[J].Journal of Beijing Forestry University,2010,32(3):166-169.
    [15]何文,宋剑刚,汪涛,等.热油处理对重组竹性能的影响[J].林业工程学报,2017,2(5):15-19.DOI:10.13360/j.issn.2096-1359.2017.05.003.HE W,SONG J G,WANG T,et al.Effect of heat oil treatment on bamboo scrimber properties[J].Journal of Forestry Engineering,2017,2(5):15-19.
    [16]解林坤,王洪艳,代沁伶,等.等离子体刻蚀并沉积类金刚石膜制备超疏水木材[J].林业工程学报,2016,1(5):10-14.DOI:10.13360/j.issn.2096-1359.2016.05.002.XIE L K,WANG H Y,DAI Q L,et al.Fabrication of superhydrophobic wood by plasma etching and deposition of diamond-like carbon films[J].Journal of Forestry Engineering,2016,1(5):10-14.