氧化锡纳米线的制备及其乙醇气体敏感性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and ethanol gas sensor properties of SnO_2 nanowires
  • 作者:李立珺 ; 苗瑞霞 ; 张霞
  • 英文作者:LI Li-jun;MIAO Rui-xia;ZHANG Xia;Posts and Telecommunications;
  • 关键词:热蒸发法 ; 氧化锡 ; 纳米线 ; 气敏性能
  • 英文关键词:thermal evaporation;;tin oxide;;nanowire;;gas sensor property
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:西安邮电大学电子工程学院;
  • 出版日期:2019-06-04 12:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.433
  • 基金:陕西省教育厅科研计划项目(14JK1656,17JK0698)
  • 语种:中文;
  • 页:CLGC201906010
  • 页数:6
  • CN:06
  • ISSN:11-1800/TB
  • 分类号:86-91
摘要
采用热蒸发法成功制备氧化锡纳米线。用X射线衍射、扫描电子显微镜和透射电子显微镜对所制备纳米线的晶格结构和表面形貌进行表征。所制材料为金红石氧化锡单晶结构,纳米线直径为50~200nm,长度为5~15μm,符合气-液-固生长机制。以氧化锡为气敏材料,制备了旁热式结构气敏元件,测试该元件对浓度范围为25×10~(-6)~500×10~(-6)的乙醇气体环境的敏感性能。结果表明,该元件的最佳工作温度约为260℃;在25×10~(-6)和500×10~(-6)的乙醇气体中,灵敏度分别为7.54和111.01,响应时间为2~20s,恢复时间为5~33s;在测试范围内灵敏度与气体浓度具有良好的线性关系;7天内重复测量误差在5%以内,稳定性较好。
        Tin oxide nanowires were successful prepared using thermal evaporation method. The crystal structure and surface morphology of the nanowires were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. The as-prepared nanowires are rutile single crystal SnO_2 structure, with diameter in 50-200 nm, and length of 5-15μm, conforming to the gas-liquid-solid growth mechanism. The heater structure gas sensor was prepared using SnO_2 nanowires as the gas sensitive material. The gas sensitive performance of the samples was tested in ethanol gas concentration range of 25×10~(-6)-500×10~(-6). The results show that the best working temperature of the sensor is about 260℃; in the 25×10~(-6) and 500×10~(-6) ethanol gas environment, the sensitivity is 7.54 and 111.01 respectively, response time of the sensor is 2-20 s, and recovery time is 5-33 s;the sensitivity and the gas concentration has a good linear relationship within the measuring range; the sensor has favourable stability with less than 5% repeated measurement error in 7 days.
引文
[1] MEI L,DENG J W,YIN X M,et al.Ultrasensitive ethanol sensor based on 3D aloe-like SnO2[J].Sensors and Actuators B:Chemical,2012,166:7-11.
    [2] LIU B,ZHANG L H,ZHAO H,et al.Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicronrods[J].Sensors and Actuators B:Chemical,2012,173:643-651.
    [3] LI F,CHEN Y J,MA J M.Porous SnO2 nanoplates for highly sensitive NO detection[J].Journal of Materials Chemistry A,2014,2:7175-7178.
    [4] WANG M,ZHU L,ZHANG C,et al.Lanthanum oxide@ antimony-doped tin oxide with high gas sensitivity and selectivity towards ethanol vapor[J].Sensors and Actuators B:Chemical,2016,224:478-484.
    [5] TYAGI P,SHARMA A,TOMAR M,et al.Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor[J].Sensors and Actuators B:Chemical,2016,224:282-289.
    [6] ABIDEEN Z U,KIM J H,KIM S S.Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties[J].Sensors and Actuators B:Chemical,2017,238:374-380.
    [7] XIAO Y,YANG Q,WANG Z,et al.Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide[J].Sensors and Actuators B:Chemical,2016,227:419-426.
    [8] CHIO H J,CHOI S J,CHOO S,et al.Hierarchical ZnO nano-wires-loaded Sb-doped SnO2-ZnO micrograting pattern via direct imprinting-assisted hydrothermal growth and its selective detection of acetone molecules[J].Scientific Reports,2016,6:18731.
    [9] DENG X L,ZHANG L L,GUO J,et al.ZnO enhanced NiO-based gas sensors towards ethanol[J].Materials Research Bulletin,2017,90:170-174.
    [10] CHOI K S,PARK S,CHANG S P.Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanop-articles[J].Sensors and Actuators B:Chemical,2017,238:871-879.
    [11] KOU X Y,WANG C,DING M D,et al.Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties[J].Sensors and Actuators B:Chemical,2016,236:425-432.
    [12] ZHANG K,YANG X,WANG Y,et al.Pd-loaded SnO2 ultra-thin nanorod-assembled hollow microspheres with the significant improvement for toluene detection[J].Sensors and Actuators B:Chemical,2017,243:465-474.
    [13] LI F,GAO X,WAG R,et al.Study on TiO2-SnO2,core-shell heterostructure nanofibers with different work function and its application in gas sensor[J].Sensors and Actuators B:Chem-ical,2017,248:812-819.
    [14] 蒋秋萍,刘拥军,杜国芳,等.纳米化SnO2气敏材料的研究进展[J].电子元件与材料,2013,32(2):77-81.JIANG Q P,LIU Y J,DU G F,et al.Research progress of SnO2 gas sensing materials[J].Electronic Components & Materials,2013,32(2):77-81.
    [15] PAN Z W,DAI Z R,WANG Z L.Nanobelts of semiconducting oxides[J].Science,2001,291(5510):1947-1949.
    [16] LIU Y,ZHENG C,WANG W,et al.Synthesis and characteri-zation of rutile SnO2 nanorods[J].Advanced Materials,2001,13(24):1883-1887.
    [17] SCOTT R W J,YANG S M,CHABANIS G,et al.Tin dioxide opals and inverted opals:near-ideal microstructures for gas sens-ors[J].Advanced Materials,2001,13(19):1468-1472.
    [18] KOLMAKOV A,ZHANG Y,CHENG G,et al.Detection of CO and O2 using tin oxide nanowire sensors[J].Advanced Mate-rials,2003,15(12):997-1000.
    [19] WANGNER R S,ELLIS W C.Vapor-liquid-solid mechanism of single crystal growth[J].Applied Physics Letters,1964,4(5):89-90.