雷暴激发的环状重力波在中高层大气中的传播特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Propagation characteristics of mesospheric concentric gravity waves excited by a thunderstorm
  • 作者:温颖 ; 张其林 ; 徐寄遥 ; 李钦增 ; 郜海阳
  • 英文作者:WEN Ying;ZHANG QiLin;XU JiYao;LI QinZeng;GAO HaiYang;Key Laboratory of Meteorological Disaster,Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology;State Key Laboratory of Space Weather,National Space Science Center,Chinese Academy of Sciences;School of Astronomy and Space Science,University of Chinese Academy of Sciences;
  • 关键词:雷暴系统 ; 重力波 ; 地闪 ; 射线追踪
  • 英文关键词:Thunderstorm;;Gravity wave;;CG flash;;Ray tracing
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点实验室;中国科学院国家空间科学中心空间天气学重点实验室;中国科学院大学天文与空间科学学院;
  • 出版日期:2019-04-10
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:国家重点研发计划资助项目(2017YFC1501505);; 国家自然科学基金面上项目(41775006,41575004)联合资助
  • 语种:中文;
  • 页:DQWX201904004
  • 页数:12
  • CN:04
  • ISSN:11-2074/P
  • 分类号:32-43
摘要
本文使用中国科学院国家空间科学中心——子午工程朔州观测站的全天空气辉成像数据,以及FY-2气象卫星云顶亮温数据(Black Body Temperature,TBB),气象再分析数据和地闪数据,研究了2013年8月10日(LT)发生在内蒙古地区的雷暴活动激发的中高层环状重力波(Concentric Gravity Waves,CGWs)事件.根据最小二乘法的拟合结果和色散关系理论曲线,确定了激发中高层环状重力波的强对流系统,该对流中心位于内蒙古自治区中部(108.9°E,40.47°N),重力波激发于雷暴初期,此时TBB低于220K的深对流面积较小,随着时间的推移,该次雷暴活动越来越强,深对流面积在23∶00达到最大,在23∶30—24∶00LT时闪电频数最高,达到120.7fl/min,随后深对流逐渐消散.在中高层87km处OH(羟基)气辉层观测到的一次CGWs事件的两组波纹,分别沿水平方向传播了149.64km和174.25km,相应位置处的水平波长分别为12.67km和16.75km,周期分别为8.56 min和10.72min,激发时间分别为19∶34LT和19∶40LT;随着水平传播距离的增加,CGWs水平波长增大.
        This work used the all-sky airglow data of the Shuozhou station from Meridian Space Weather Monitoring Project,National Space Science Center,Chinese Academy of Sciences,Black Body Temperature(TBB)data from FY-2 meteorological satellites,CG(cloud-ground)flash data,reanalysis data of NCEP(National Centers for Environmental Prediction)and ECWMF(European Centre for Medium-Range Weather Forecasts).We analyzed a concentric gravity waves(CGWs)event observed in the middle and upper atmosphere over North China on 10 August 2013(local time),caused by a thunderstorm in the troposphere.The ray tracing simulationsuggests that the concentric rings observed by all-sky airglow imager in 87 km were motivated by this convective system,of which the convective center was located in the middle of Inner Mongolia autonomous region(108.9°E,40.47°N).At the initial stage,the small area of deep convection with TBB below 220 K excited the CGWs.The stronger convection occurred along with the system development,and deep convection area reached its maximum at 23∶00 LT.During 23∶30 LT to 24∶00 LT,the CG lightning flash frequency reached the maximum 120.7 fl/min,and then deep convection eventually disappeared.At the middle and upper atmosphere,the excitation source was 149.64 km and 174.25 km away from the CGWs ripples in 87 km by all-sky imager,and the horizontal wavelengths were 12.67 km and 16.75 km,periods of waves were 8.56 min and 10.72 min,and the excited times are 19∶34 and 19∶40 LT,respectively.With the increase of horizontal propagation distance,the horizontal wave length of CGWs increased.
引文
Alexander M J,Holton J R,Durran D R.1995.The gravity wave response above deep convection in a squall line simulation.Journal of the Atmospheric Sciences,52(12):2212-2226,doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.
    Alexander M J,May P T,Beres J H.2004.Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment.Journal of Geophysical Research,109:D20S04,doi:10.1029/2004JD004729.
    Augustine J A,Howard K W.1991.Mesoscale convective complexes over the United States during 1986and 1987.Monthly Weather Review,119(7):1575-1589.
    Baker D J,Stair A T.1988.Rocket measurements of the altitude distributions of the hydroxyl airglow.Physica Scripta,37(4):611-622,doi:10.1088/0031-8949/37/4/021.
    Bedka K M.2011.Overshooting cloud top detections using MSGSEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe.Atmospheric Research,99(2):175-189,doi:10.1016/j.atmosres.2010.10.001.
    Blanc E,Farges T,Le Pichon A,et al.2014.Ten year observations of gravity waves from thunderstorms in western Africa.Journal of Geophysical Research,119(11):6409-6418,doi:10.1002/2013JD020499.
    Boeck W L,Vaughan O H,Blakeslee R,et al.1992.Lightning induced brightening in the airglow layer.Geophysical Research Letters,19(2):99-102,doi:10.1029/91GL03168.
    Chen D,Chen Z Y,LüD R.2012.Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005.Science China Earth Sciences,55(4):602-610,doi:10.1007/s11430-011-4303-1.
    Chou M Y,Lin C C H,Yue J,et al.2017.Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti(2016).Geophysical Research Letters,44(3):1219-1226,doi:10.1002/2016GL072205.
    Coble M,Papen G C,Gardner C S.1998.Computing twodimensional unambiguous horizontal wavenumber spectra from OH airglow images.IEEE Transactions on Geoscience and Remote Sensing,36(2):368-382,doi:10.1109/36.662723.
    Ejiri M K,Shiokawa K,Ogawa T,et al.2003.Statistical study of short-period gravity waves in OH and OI nightglow images at two separated sites.Journal of Geophysical Research,108(D21):4679,doi:10.1029/2002JD002795.
    Fovell R,Durran D,Holton J R.1992.Numerical simulations of convectively generated stratospheric gravity waves.Journal of the Atmospheric Sciences,49(16):1427-1442,doi:10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.
    Fritts D C,Alexander M J.2003.Gravity wave dynamics and effects in the middle atmosphere.Reviews of Geophysics,41(1):1003,doi:10.1029/2001RG000106.
    Fritts D C,Nastrom G D.1992.Sources of mesoscale variability of gravity waves.Part II:Frontal,convective,and jet stream excitation.Journal of the Atmospheric Sciences,49(2):111-127,doi:10.1175/1520-0469(1992)049<0111:SOMVOG>2.0.CO;2.
    Hecht J H,Walterscheid R L,Hickey M P,et al.2001.Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois.Journal of Geophysical Research:Atmospheres,106(D6):5181-5195,doi:10.1029/2000JD900722.
    Hines C O.1960.Internal atmospheric gravity waves at ionospheric heights.Canadian Journal of Physics,38(11):1441-1481.
    Hoffmann L,Alexander M J.2010.Occurrence frequency of convective gravity waves during the North American thunderstorm season.Journal of Geophysical Research,115(D20):D20111,doi:10.1029/2010JD014401.
    Hong J,Yao Z G,Han Z G,et al.2015.Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa.Chinese Journal of Geophysics(in Chinese),58(7):2283-2293,doi:10.6038/cjg20150707.
    Jirak I L,Cotton W R,McAnelly R L.2003.Satellite and radar survey of mesoscale convective system development.Monthly Weather Review,131(10):2428-2449,doi:10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.
    Lane T P,Reeder M J,Clark T L.2001.Numerical modeling of gravity wave generation by deep tropical convection.Journal of the Atmospheric Sciences,58(10):1249-1274,doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.
    Lane T P,Sharman R D,Clark T L,et al.2003.An investigation of turbulence generation mechanisms above deep convection.Journal of the Atmospheric Sciences,60(10):1297-1321,doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.
    Larsen M F,Swartz W E,Woodman R F.1982.Gravity-wave generation by thunderstorms observed with a vertically-pointing430MHz radar.Geophysical Research Letters,9(5):571-574,doi:10.1029/GL009i005p00571.
    Li Q Z,Xu J Y,Yue J,et al.2011.Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong,in northern China.Annales Geophysicae,29(8):1401-1410,doi:10.5194/angeo-29-1401-2011.
    Li Q Z,Xu J Y,Yue J,et al.2013.Investigation of a mesospheric bore event over northern China.AnnalesGeophysicae,31(3):409-418,doi:10.5194/angeo-31-409-2013.
    Liu X,Xu J Y,Li W Q,et al.2009.Parallel numerical model for the simulation of three dimensional gravity wave’s propagation.Chinese Journal of Space Science(in Chinese),29(6):563-572,doi:10.11728/cjss2009.06.563.
    Liu X,Yue J,Xu J Y,et al.2017.Variations of global gravity waves derived from 14years of SABER temperature observations.Journal of Geophysical Research:Atmospheres,122(12):6231-6249,doi:10.1002/2017JD026604.
    Maddox R A.1980.Mesoscale convective complexes.Bulletin of the American Meteorological Society,61(11):1374-1387.
    Marshall R A,Yue J,Lyons W A.2015.Numerical simulation of an elve modulated by agravity wave.Geophysical Research Letters,42(14):6120-6127,doi:10.1002/2015GL064913.
    Medeiros A F,Taylor M J,Takahashi H,et al.2003.An investigation of gravity wave activity in the low-latitude upper mesosphere:Propagation direction and wind filtering.Journal of Geophysical Research,108(D14):4411,doi:10.1029/2002jd002593.
    Nakamura T,Aono T,Tsuda T,et al.2003.Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia.Geophysical Research Letters,30(17):1882,doi:10.1029/2003GL017619.
    Narayanan V L,Gurubaran S.2013.Statistical characteristics of high frequency gravity waves observed by OH airglow imaging from Tirunelveli(8.7°N).Journal of Atmospheric and SolarTerrestrial Physics,92:43-50,doi:10.1016/j.jastp.2012.09.002.
    Nastrom G D,Fritts D C.1992.Sources of mesoscale variability of gravity waves.Part I:Topographic excitation.Journal of the Atmospheric Sciences,49(2):101-110,doi:10.1175/1520-0469(1992)049<0101:SOMVOG>2.0.CO;2.
    Pautet P D,Taylor M J,Liu A Z,et al.2005.Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment(DAWEX)and their dominant source regions.Journal of Geophysical Research,110:D03S90,doi:10.1029/2004JD004954.
    Pierce A D,Coroniti S C.1966.A mechanism for the generation of acoustic-gravity waves during thunderstorm formation.Nature,210(5042):1209-1210,doi:10.1038/2101209a0.
    Siefring C L,Morrill J S,Sentman D D,et al.2010.Simultaneous near-infrared and visible observations of sprites and acousticgravity waves during the EXL98campaign.Journal of Geophysical Research,115(10):A00E57,doi:10.1029/2009ja014862.
    Suzuki S,Shiokawa K,Otsuka Y,et al.2007.Gravity wave momentum flux in the upper mesosphere derived from OHairglow imaging measurements.Earth,Planets&Space,59(5):421-428,doi:10.1186/bf03352703.
    Suzuki S,Vadas S L,Shiokawa K,et al.2013.Typhoon-induced concentric airglow structures in the mesopause region.Geophysical Research Letters,40(22):5983-5987,doi:10.1002/2013gl058087.
    Swenson G R,Mende S B.1994.OH emission and gravity waves(including a breaking wave)in all-sky imagery from Bear Lake,UT.Geophysical Research Letters,21(20):2239-2242,doi:10.1029/94gl02112.
    Tang J,Kamalabadi F,Franke S J,et al.2005.Estimation of gravity wave momentum flux with spectroscopic imaging.IEEETransactions on Geoscience and Remote Sensing,43(1):103-109,doi:10.1109/TGRS.2004.836268.
    Taylor M J,Hapgood M A.1988.Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions.Planetary and Space Science,36(10):975-985,doi:10.1016/0032-0633(88)90035-9.
    Vadas S L,Fritts D C.2009.Reconstruction of the gravity wave field from convective plumes via ray tracing.Annales Geophysicae,27(1):147-177,doi:10.5194/angeo-27-147-2009.
    Wang C M,Li Q Z,Xu J Y,et al.2014.Statistical characteristics analysis of atmospheric gravity waves with OH all-sky airglow imagers at low-latitude region of China.Chinese Journal of Geophysics(in Chinese),57(11):3659-3667,doi:10.6038/cjg20141120.
    Wang C M,Li Q Z,Xu J Y,et al.2016.Gravity wave characteristics from multi-stations observation with OH all-sky airglow imagers over mid-latitude regions of China.Chinese Journal of Geophysics(in Chinese),59(5):1566-1577,doi:10.6038/cjg20160502.
    Wrasse C M,Nakamura T,Tsuda T,et al.2006.Reverse ray tracing of the mesospheric gravity waves observed at 23°S(Brazil)and 7°S(Indonesia)in airglow imagers.Journal of Atmospheric and Solar-Terrestrial Physics,68(2):163-181,doi:10.1016/j.jastp.2005.10.012.
    Xu J Y,Smith A K,Jiang G Y,et al.2010.Strong longitudinal variations in the OH nightglow.Geophysical Research Letters,37:L21801,doi:10.1029/2010GL043972.
    Xu J Y,Li Q Z,Yue J,et al.2015.Concentric gravity waves over northern China observed by an airglow imager network and satellites.Journal of Geophysical Research,120(21):11058-11078,doi:10.1002/2015JD023786.
    Xu X,Wang Y,Xue M.2012.Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains.Journal of the Atmospheric Sciences,69(12):3733-3744,doi:10.1175/jas-d-12-044.1.
    Yao Z G,Zhao Z L,Han Z G.2015.Stratospheric gravity waves during summer over East Asia derived from AIRS observations.
    Chinese Journal of Geophysics(in Chinese),58(4):1121-1134,doi:10.6038/cjg20150403.
    Yue J,Vadas S L,She C Y,et al.2009.Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins,Colorado.Journal of Geophysical Research:Atmospheres,114(D6):D06104,doi:10.1029/2008jd011244.
    Yue J,Hoffmann L,Alexander M J.2013.Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment.Journal of Geophysical Research:Atmospheres,118(8):3178-3191,doi:10.1002/jgrd.50341.
    洪军,姚志刚,韩志刚等.2015.台风“梅花”诱发平流层重力波的数值模拟与AIRS观测.地球物理学报,58(7):2283-2293,doi:10.6038/cjg20150707.
    刘晓,徐寄遥,李文强等.2009.模拟三维重力波传播过程的并行数值模式.空间科学学报,29(6):563-572,doi:10.11728/cjss2009.06.563.
    王翠梅,李钦增,徐寄遥等.2014.基于OH全天空气辉成像仪观测的中国低纬地区的重力波传播统计特征.地球物理学报,57(11):3659-3667,doi:10.6038/cjg20141120.
    王翠梅,李钦增,徐寄遥等.2016.基于多台站OH全天空气辉成像仪观测的中国中纬地区重力波传播特性.地球物理学报,59(5):1566-1577,doi:10.6038/cjg20160502.
    姚志刚,赵增亮,韩志刚.2015.AIRS观测的东亚夏季平流层重力波特征.地球物理学报,58(4):1121-1134,doi:10.6038/cjg20150403.本文编辑何燕