空间隔板焊接X形圆钢管相贯节点受力性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on mechanical behavior of X-shaped welded spatial partition plate tubular joints
  • 作者:王鹏 ; 王湛 ; 潘建荣 ; 陈磊
  • 英文作者:WANG Peng;WANG Zhan;PAN Jianrong;CHEN Lei;School of Civil Engineering and Transportation, South China University of Technology;State Key Laboratory of Subtropical Building Science, South China University of Technology;
  • 关键词:圆钢管相贯节点隔板焊接 ; 空间角度 ; 拟静力试验 ; 非线性有限元分析 ; 受力性能
  • 英文关键词:welded partition plate tubular joint;;spatial angle;;quasi-static test;;non-linear finite element analysis;;mechanical behavior
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:华南理工大学土木与交通学院;华南理工大学亚热带建筑科学国家重点实验室;
  • 出版日期:2018-12-17 17:03
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51638009,51778241);; 亚热带建筑科学国家重点实验室基金项目(2017ZB28);; 华南理工大学中央高校基本科研业务费专项(2017ZD026)
  • 语种:中文;
  • 页:JZJB201903023
  • 页数:9
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:225-233
摘要
对3个足尺空间隔板焊接X形圆钢管相贯节点分别进行了轴力作用下的单调加载试验和往复加载试验,得到了节点的破坏模式,并对节点的受力性能包括静力弹性刚度、承载力、延性和滞回性能等进行分析。验证了该种空间隔板焊接节点的构造措施合理,节点的承载能力相对设计工况有两倍以上的安全储备,节点受力安全可靠。运用ABAQUS软件建立有限元分析模型,并与试验结果对比,验证了有限元模型的适用性,并对节点进行设计工况下的内力校核,参数分析结果表明,管径厚比、相贯角度、椭圆连接板厚度及平面外角度对空间隔板焊接节点性能影响较大,节点刚度和承载力随着支管径厚比和平面外角度的增大而降低,随着相贯角度和椭圆连接板厚度的增大而提高。综合试验和有限元分析结果,节点设计要确保支管设计内力不大于节点承载力,增大椭圆板厚度以及补焊椭圆板隐藏焊缝对节点的受力性能改善较好;当设计该类较小相贯角度(小于20°)的节点时,需按节点承载力进行设计,同时考虑轴向刚度对节点受力性能的影响。
        Three full-scale welded spatial partition plate tubular joint tests were carried out to examine their static and hysteretic behaivour under axial force.The experiment results reveals the fundamental behavior,including the failure modes, elastic stiffness, bearing capacity, ductility and hysteretic behavior, of the considered joints. The results indicate that the joints are reasonably designed and the bearing capacity is two times more than the design resistance.Non-linear finite element models were established by software ABAQUS. The FE results are shown to agree well with the experiment results, verifying the applibility of FE model. The parametric analysis shows that the diameter-thickness ratio, intersecting angle, thickness of elliptical plate and out-of-plane angle are the most important factors affecting the behavior of the welded spatial partition plate tubular joints. In addtion, the stiffness and bearing capacity of the joints decrease with an increase in the diameter-thickness ratio of the branch pipe and out-of-plane angle, but increase with an increase in the intersecting angle and the thickness of the elliptical connecting plate. Summarizing the test and FE results, it is recommended that the bearing capacity of the branch pipe should not be larger than that of the joint, and thickening the elliptical plate and adding the hidden weld of the elliptical plate can help improve the mechanical behavior of the joint. When a small intersecting angle(less than 20°) is designed,the bearing capacity of the joint governs the design, and the influence of axial stiffness on the behavior of the joint should be considered.
引文
[1] 韩小雷, 黄超, 方小丹,等. 广州西塔巨型斜交网格空间相贯节点试验研究[J]. 建筑结构学报, 2010, 31(1):63- 69.(HAN Xiaolei, HUANG Chao, FANG Xiaodan,et al.Experimental study on spatial intersecting connections used in obliquely crossing mega lattice of the Guangzhou West Tower[J]. Journal of Building Structures,2010,31(1):63- 69.(in Chinese))
    [2] 陈俊岭, 马人乐, 何敏娟. “桉叶糖”异型钢管相贯焊节点试验和有限元分析[J]. 同济大学学报(自然科学版), 2009, 37(3): 308-311.(CHEN Junling,MA Renle, HE Minjuan. Experiment study and finite element analysis of X-connections of anyetang special steel pipe[J].Journal of Tongji University (Natural Science), 2009, 37(3): 308-311.(in Chinese))
    [3] 李庆钢, 杜钦钦, 贾连光,等. 斜交网格结构空间相贯焊接节点承载力有限元分析[J].钢结构, 2011, 26(9): 31-35.(LI Qinggang,DU Qinqin,JIA Lianguang, et al. Analysis on the bearing capacity of welded spatial tubular joints used in diagonal-crossing grid structure[J].Steel Constucture,2011, 26(9): 31-35.(in Chinese))
    [4] 吴超. 十字隔板焊接节点静力与滞回性能试验研究[D]. 北京: 北京交通大学, 2014:17- 61.(WU Chao. Research on static and hysteretic behavior of corss baffle welded joints[D].Beijing: Beijing Jiaotong University, 2014:17- 61.(in Chinese))
    [5] 孙飞飞,冉明明,周健,等. 钢管混凝土柱巨型交叉节点受力性能研究[J].建筑结构学报,2017,38(5):69-76.(SUN Feifei,RAN Mingming,ZHOU Jian, et al. Mechanical behavior of huge crossover joint between two concrete-filled steel tubular columns[J].Journal of Building Structures,2017,38(5):69-76.(in Chinese))
    [6] 罗馨怡. 基于四弹簧模型的斜交相贯节点抗弯刚度及滞回性能研究[D].成都:西南交通大学,2018:9- 42.(LUO Xinyi. Study on the flexural stiffness and hysteretic behavior of diagrid unstiffened joint based on four-spring assemblage model[D].Chengdu: Southwest Jiaotong University, 2018:9- 42. (in Chinese))
    [7] KIM Y J, KIM M H, JUNG I Y. Experimental investigation of the cyclic behavior of nodes in diagrid structures[J].Engineering Structures,2011, 33(7):2134-2144.
    [8] 钢结构工程施工质量验收规范: GB 50205—2001[S].北京:中国建筑工业出版社,2001.(Code for acceptance of construction quality of steel structures: GB 50205—2001[S].Beijing:China Architecture & Building Press,2001.(in Chinese))
    [9] 建筑抗震试验方法规程:JGJ 101—2015[S].北京:中国建筑工业出版社,2015.(Specification for seismic test method of buildings:JGJ 101—2015[S]. Beijing:China Architecture & Building Press,2015.(in Chinese))
    [10] 庄茁. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社, 2009:17- 47.(ZHUANG Zhuo. Finite element analysis and application based on ABAQUS [M].Beijing:Tsinghua University Press, 2009:17- 47.(in Chinese))
    [11] KUROBANE Y, MAKINO Y, OCHI K. Ultimate resistance of unstiffened tubular joints[J]. Journal of Structural Engineering, 1984, 110(2):385- 400.
    [12] MAKINO Y. Experimental study on ultimate capacity and deformation for tubular joints[D]. Osaka:Osaka University,1984:18- 43.