AZ31镁合金搅拌摩擦焊接头疲劳裂纹扩展行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue Crack Propagation of Friction Stir Welded Joint of AZ31 Magnesium Alloy
  • 作者:王小娇 ; 董鹏 ; 王风兰 ; 闫志峰
  • 英文作者:WANG Xiaojiao;DONG Peng;WANG FengLan;YAN Zhifeng;School of Material Science and Engineering, Taiyuan University of Technology;Shanxi Key Laboratory of Advanced Magnesium-based Materials;Electric Power Occupational Technical Institute of SEPC;
  • 关键词:AZ31镁合金 ; 搅拌摩擦焊 ; 疲劳裂纹扩展 ; 红外热像技术
  • 英文关键词:AZ31 magnesium alloy;;friction stir welding;;fatigue crack propagation;;infrared thermography
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:太原理工大学材料科学与工程学院;山西省镁基材料重点实验室;山西电力职业技术学院;
  • 出版日期:2019-03-19 09:24
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.507
  • 语种:中文;
  • 页:SJGY201905020
  • 页数:4
  • CN:05
  • ISSN:61-1133/TG
  • 分类号:88-91
摘要
利用红外热像技术对AZ31镁合金搅拌摩擦焊焊接接头不同区域的疲劳裂纹扩展行为进行了研究。研究发现,在疲劳裂纹扩展过程中试件表面温度演变可以分为三个阶段:温度缓慢上升阶段,温度平衡阶段,温度快速上升阶段,温度的变化与裂纹尖端的变形有关;与前进侧和后退侧试样相比,焊缝中心在疲劳裂纹扩展过程中具有最快的裂纹扩展速率和最高的表面温度,这与焊缝中心区域材料整体具有较大的Schmid因子有关,Schmid因子越大,材料越容易变形。本研究对于镁合金在生产结构中的安全应用提供参考依据。
        The fatigue crack propagation behavior of different regions of AZ31 magnesium alloy friction stir welded joint was investigated by infrared thermography. The research results show that temperature evolution of the specimen surface can be divided into three stages during fatigue crack propagation process, which are slow rising stage, balance stage and rapid rising stage. The temperature variation is related to the deformation of crack tip. Compared with that of the specimens of advancing side and retreating side, the weld center has the fastest crack growth rate and the maximum surface temperature during the fatigue crack propagation process, which is related to larger Schmid factor of the overall weld central area material.The larger the Schmid factor is, the more easily the material deforms. This study provides a reference for the safe application of magnesium alloy in production structure.
引文
[1]Mordike B L.Magnesium properties-applications-potential[J].Materials Science&Engineering A,2001,302(1):37-45.
    [2]胡学安,徐道荣.镁合金的焊接方法及其工艺要素[J].轻合金加工技术,2006,34(8):9-13.
    [3]Donohue J J.The friction welding advantage[J].Welding Journal,2001,80(5):30-34.
    [4]张华,林三宝,吴林等.镁合金AZ31搅拌摩擦焊接头的微观组织[J].中国有色金属学报,2003,13(6):191-194.
    [5]金属材料疲劳裂纹扩展速率试验方法:GB/T 6398-2000[S].北京:中国标准出版社,2000.
    [6]Tang W,Guo X,Mcclure J C,et al.Heat Input and Temperature Distribution in Friction Stir Welding[J].Journal of Materials Processing&Manufacturing Science,1998,7(2):163-172.
    [7]Zhang H X,Wei C Y,Yan Z F,et al.Research on fatigue crack propagation behaviour of 4003 ferritic stainless steel based on infrared thermography[J].Fatigue&Fracture of Engineering Materials&Structures,2016,39(2):206-216.
    [8]Cui Z Q,Yang H W,Wang W X,et al.Research on fatigue crack growth behavior of AZ31B magnesium alloy electron beam welded joints based on temperature distribution around the crack tip[J].Engineering Fracture Mechanics,2015,133:14-23.
    [9]Strubbia R,Heren軌úS,Alvarez-Armas I,et al.Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101[J].Materials Science&Engineering A,2014,615:169-174.
    [10]Jiang R,Karpasitis N,Gao N,et al.Effects of microstructures on fatigue crack initiation and short crack propagation at room temperature in an advanced disc superalloy[J].Materials Science&Engineering A,2015,641(8):148-159.