基于双地震动强度指标的桥墩地震易损性模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on seismic fragility models of piers based on double ground motion intensity measures
  • 作者:陈力波 ; 王化河 ; 黄才贵 ; 涂意 ; 谷音
  • 英文作者:CHEN Libo;WANG Huahe;HUANG Caigui;TU Yi;GU Yin;College of Civil Engineering,Fuzhou University;
  • 关键词:地震易损性模型 ; 增量动力分析 ; 桥墩 ; 地震动强度指标 ; 受试者工作特性分析
  • 英文关键词:seismic fragility models;;incremental dynamic analysis;;pier;;intensity measures;;receiver operating characteristic
  • 中文刊名:FZDZ
  • 英文刊名:Journal of Fuzhou University(Natural Science Edition)
  • 机构:福州大学土木工程学院;
  • 出版日期:2018-06-26 13:53
  • 出版单位:福州大学学报(自然科学版)
  • 年:2018
  • 期:v.46;No.224
  • 基金:国家自然科学基金资助项目(51308125);; 中国博士后科学基金资助项目(2014M561855)
  • 语种:中文;
  • 页:FZDZ201804010
  • 页数:8
  • CN:04
  • ISSN:35-1117/N
  • 分类号:72-79
摘要
基于双地震动强度指标,开展典型桥墩的地震易损性模型研究.采用Open Sees软件建立桥墩的有限元分析模型,通过增量动力分析方法计算得到桥墩的地震响应.根据受试者工作特性分析方法对地震动强度指标进行评价,选择出有效性较好的地震动强度指标组合,基于线性组合的方法分别建立双地震动强度指标桥墩易损性模型,并和单地震动强度指标模型进行对比.结果表明:双地震动强度指标的有效性普遍优于单一地震动强度指标;桥墩发生相同损伤状态时,基于双地震动强度指标建立的易损性曲面的中位值小于基于单一地震动强度指标得到的中位值.研究结果可为桥梁结构的后续风险评估及加固决策提供参考.
        Based on the double ground motion intensity measures,the research of seismic fragility models for piers is carried out in this study. By adopting the Open Sees platform,finite element models of the piers were established,and the seismic response is obtained with the method of incremental dynamic analysis( IDA). The selected ground motion intensity measures( IM) were evaluated through the approach of receiver operating characteristic( ROC). The seismic fragility models with double ground motion intensity measures were established based on linear combination method,which compared with the results of single ground motion intensity measures. The analyses results show that the efficiency of the double ground motion intensity measures is generally superior to that of the single ground motion intensity measures. For an equal damage state,the median values obtained from the seismic fragility surface based on the double ground motion intensity measures are less than those based on the single ground motion intensity measures. The results can be used for the further seismic risk assessment and bridge retrofit prioritization.
引文
[1]APOSTOLOPOULOS C,NI CHOINE M,KASHANI M M,et al.Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge[J].International Journal of Structural Integrity,2016,7(2):227-239.
    [2]GODA K,TESFAMARIAM S.Multi-variate seismic demand modelling using copulas:application to non-ductile reinforced concrete frame in Victoria,Canada[J].Structural Safety,2015,56:39-51.
    [3]陈力波.汶川地区公路桥梁地震易损性分析研究[D].成都:西南交通大学,2012.
    [4]RAJEEV P,FRANCHIN P,PINTO P E.Increased accuracy of vector-im-based seismic risk assessment[J].Journal of Earthquake Engineering,2008,12(Sup1):111-124.
    [5]李宁,李杨,李忠献.基于向量IM的钢筋混凝土桥墩地震易损性分析[J].工程力学,2016,33(1):58-63.
    [6]BAKER J W.Vector-valued ground motion intensity measures for probabilistic seismic demand analysis[D].Palo Alto:Stanford University,2005.
    [7]BERTERO V V.Strength and deformation capacities of buildings under extreme environments[J].Structural Engineering and Structural Mechanics,1977,53(1):211-215.
    [8]VAMVATSIKOS D,CORNELL A C.Incremental dynamic analysis[J].Earthquake Engineering&Structural Dynamics,2002,31(11):491-514.
    [9]HAZUS M H.Earthquake model technical manual[M].Washington D C:Federal Emergency Management Agency,2003.
    [10]HWANG H,LIU J,CHIU Y.Seismic fragility analysis of highway bridges[R].Memphis:Center for Earthquake Research and Information,the University of Memphi,2001.
    [11]PHAN V,SAIIDI M S.Near-fault ground motion effects on reinforced concrete bridge columns[J].Journal of Structural Engineering,2007,133(7):982-989.
    [12]Japan Road Association.Design specifications of highway bridges.part V:seismic design[S].Tokyo:Maruzen,2012.
    [13]李宇.考虑残余位移和土结构相互作用的桥梁结构:基于性能的抗震设计及评估[D].北京:北京交通大学,2010.
    [14]重庆交通科研设计院.公路桥梁抗震设计细则:JTG/T B02-01—2008[S].北京:人民交通出版社,2008.
    [15]李贵乾.钢筋混凝土桥墩抗震性能试验研究及数值分析[D].重庆:重庆交通大学,2010.
    [16]MAZZONI S,MCKENNA F,FENVES G L.Open Sees command language manual[M].Berkeley:Pacific Earthquake Engineering Research Center,2005.
    [17]WON K L.Simulation and performance-based earthquake engineering assessment of self-centering posttensioned concrete bridge systems[D].Palo Alto:Stanford University,2007.
    [18]LEE W K,BILLINGTON S L.Performance-based earthquake engineering assessment of a self-centering,post-tensioned concrete bridge system[J].Earthquake Engineering&Structural Dynamics,2011,40(8):887-902.
    [19]MARONEY B H.Large scale bridge abutment tests to determine stiffness and ultimate strength under seismic loading[D].Berkeley:University of California,1995.
    [20]SWETS J A.Measuring the accuracy of diagnostic systems[J].Science,1988,240(4857):1285-1293.
    [21]BAKER J W.Efficient analytical fragility function fitting using dynamic structural analysis[J].Earthquake Spectra,2015,31(1):579-599.
    [22]李杨.近场地震作用下钢筋混凝土桥梁的地震易损性分析[D].天津:天津大学,2013.
    [23]BLISS C I.The method of probits[J].Science,1934,79(79):38-39.