华北石质山地侧柏人工林C、N、P生态化学计量特征的季节变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal variation in C, N, and P stoichiometry of Platycladus orientalis plantation in the rocky mountainous areas of North China
  • 作者:封焕英 ; 杜满义 ; 辛学兵 ; 高旭 ; 张连金 ; 孔庆云 ; 法蕾 ; 吴迪
  • 英文作者:FENG Huanying;DU Manyi;XIN Xuebing;GAO Xu;ZHANG Lianjin;KONG Qingyun;FA Lei;WU Di;Experimental Center of Forestry in North China, Chinese Academy of Forestry;
  • 关键词:生态化学计量学 ; 器官 ; 季节 ; 侧柏人工林 ; 石质山地
  • 英文关键词:ecological stoichiometry;;organ;;season;;Platycladus orientalis plantation;;rocky mountainous area
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国林业科学研究院华北林业实验中心;
  • 出版日期:2018-12-21 16:40
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:中央级公益性科研院所基本科研业务费专项(CAFYBB2018MA002,CAFYBB2014QA036);; 国家重点研发计划(2016YFD060020304)
  • 语种:中文;
  • 页:STXB201905009
  • 页数:11
  • CN:05
  • ISSN:11-2031/Q
  • 分类号:92-102
摘要
以北京九龙山自然保护区幼龄侧柏人工林为研究对象,对其不同生长季节叶、枝、根(0—10 cm、10—20 cm土层)的碳(C)、氮(N)、磷(P)含量及其生态化学计量学特征进行了分析,深入探讨了生长季节与器官以及两因素交互作用对以上特征的影响,研究有助于理解植物各性状之间的相互作用以及植物生长过程中资源的利用和分配状况。结果表明:1)不同器官间C含量为414.97—461.58 g/kg,枝最大,根(0—10 cm)最小;N含量为6.57—14.28 g/kg,叶最大,枝最小;P含量为0.39—1.28 g/kg,叶最大,根(10—20 cm)最小;C∶N为31.76—70.98,枝最大,叶最小;C∶P为369.93—1099.20,根(10—20 cm)最大,叶最小;N∶P为9.21—23.81,根(0—10 cm)最大,枝最小。整个生长季节中侧柏各器官C含量最稳定,变异系数均小于7%;P含量变异性最大,变异系数均超过15%,N含量变异性介于两者之间;各器官中C∶N和N∶P较C∶P更为稳定,C、N与P具有较好的耦合协同性,C∶P和N∶P的变化主要取决于P的变化。2)器官对C、N、P含量及其化学计量关系均存在显著影响,生长季节对N和P含量存在显著影响,两者交互作用只对P含量存在显著影响,器官对侧柏C、N、P含量及其化学计量变异的贡献大于生长季节。3)侧柏各器官间C、N、P含量及其化学计量比相关性多数未达到显著性水平,仅有叶与枝中的P及C∶P显著相关,说明侧柏器官分化过程中各器官对元素的吸收利用具有特异性。侧柏叶片N∶P<14,说明生长季节里幼龄侧柏人工林更多受到N限制。
        This study was conducted to analyze the dynamics of carbon(C), nitrogen(N), and phosphorus(P), and their stoichiometric characteristics in different organs(leaves, branches, and roots) and during different seasons, in a young plantation of Platycladus orientalis in the Beijing Jiulong nature reserve. Studies on these relationship provide insights into interactions among plant functional traits and plant strategies for resource acquisition and mass partitioning. The results showed that branches contained the highest concentration of C but the lowest concentration of N. Leaves had the highest concentrations of N and P, whereas roots possessed the lowest concentration of C and P. Moreover, leaves had the lowest C∶N and C∶P ratios, whereas roots had the highest ratios of N∶P and C∶P, and branches had the highest C∶N ratio but the lowest N∶P ratio. Furthermore, during the growing season, the concentration of C in each organ was more stable than that of N and P. The C∶N and N∶P ratios in each organ were more stable than the C∶P ratio. Both C and N concentration were strongly positively correlated with P concentration, with the change in C∶P and N∶P ratios being mainly determined by P concentration. Plant organs differed significantly in terms of the concentrations of C, N, and P and the ratios C∶N, C∶P, and N∶P, whereas seasonal factors significantly influenced the concentrations of N and P, but their interaction effect only had influence on the concentration of P. Compared with the seasonal variations, the difference between organs made a larger contribution in determining the concentrations of C, N, and P and their stoichiometry in P. orientalis. The concentrations of C, N, and P and their stoichiometry showed no significant relationships among plant organs, except for the concentration of P and the C∶P ratio between leaves and branches, which indicates that the organs have specific requirements for element absorption and utilization during the process of organ differentiation. The recorded leaf N∶P ratio less than 14 indicates that the growth of young P. orientalis plants is more restricted by N during the growing seasons.
引文
[1] 郭宝华, 刘广路, 范少辉, 杜满义, 苏文会. 不同生产力水平毛竹林碳氮磷的分布格局和计量特征. 林业科学, 2014, 50(6): 1- 9.
    [2] 周红艳, 吴琴, 陈明月, 匡伟, 常玲玲, 胡启武. 鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征. 植物生态学报, 2017, 41(4): 461- 470.
    [3] Elser J J, Fagan W F, Denno R F, Dobberfuhl D R, Folarin A, Huberty A, Interlandi S, Kilham S S, McCauley E, Schulz K L, Siemann E H, Sterner R W. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408(6812): 578- 580.
    [4] 洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响. 应用生态学报, 2013, 24(9): 2658- 2665.
    [5] Moore T R, Trofymow J A, Prescott C E, Titus B D, Group C W. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant and Soil, 2011, 339(1/2): 163- 175.
    [6] Zhang G M, Han X G, Elser J J. Rapid top-down regulation of plant C∶N∶P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem. Oecologia, 2011, 166(1): 253- 264.
    [7] 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应. 植物生态学报, 2016, 40(2): 165- 176.
    [8] Wang W Q, Sardans J, Wang C, Zeng C S, Tong C, Asensio D, Peňuelas J. Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecology, 2015, 216(6): 809- 822.
    [9] Minden V, Kleyer M. Internal and external regulation of plant organ stoichiometry. Plant Biology, 2014, 16(5): 897- 907.
    [10] 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云. 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报: 自然科学版, 2009, 45(5): 855- 860.
    [11] 周鹏, 耿燕, 马文红, 贺金生. 温带草地主要优势植物不同器官间功能性状的关联. 植物生态学报, 2010, 34(1): 7- 16.
    [12] Li H L, Crabbe M J C, Xu F L, Wang W L, Ma L H, Niu R L, Gao X, Li X X, Zhang P, Ma X, Chen H K. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C∶N∶P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China. PLoS One, 2017, 12(9): e0185163.
    [13] Liu F D, Liu Y H, Wang G M, Song Y, Liu Q, Li D S, Mao P L, Zhang H. Seasonal variations of C∶N∶P stoichiometry and their trade-offs in different organs of Suaeda salsa in coastal wetland of Yellow River Delta, China. PLoS One, 2015, 10(9): e0138169.
    [14] 李瑞霞, 郝俊鹏, 闵建刚, 陈信力, 卢雯, 关庆伟. 不同密度侧柏人工林碳储量变化及其机理初探. 生态环境学报, 2012, 21(8): 1392- 1397.
    [15] 李瑞霞, 凌宁, 郝俊鹏, 闵建刚, 陈信力, 关庆伟. 林龄对侧柏人工林碳储量以及细根形态和生物量的影响. 南京林业大学学报: 自然科学版, 2013, 37(2): 21- 27.
    [16] 王进鑫, 黄宝龙, 王明春, 王迪海. 侧柏幼树不同生长阶段对水分的敏感性与蒸腾效率. 生态学报, 2005, 25(4): 711- 718.
    [17] 段劼, 马履一, 贾黎明, 徐程扬, 贾忠奎, 车文瑞. 北京地区侧柏人工林密度效应. 生态学报, 2010, 30(12): 3206- 3214.
    [18] 张振明, 余新晓, 牛健植, 鲁绍伟, 宋维峰, 刘秀萍, 张颖. 不同林分枯落物层的水文生态功能. 水土保持学报, 2005, 19(3): 139- 143.
    [19] 吴迪, 辛学兵, 赵明扬, 裴顺祥, 孔颖. 北京九龙山不同林分枯落物及土壤水文效应. 林业科学研究, 2014, 27(3): 417- 422.
    [20] 赵勇, 樊巍, 吴明作, 张军, 朱彦峰. 太行山地区侧柏人工林主要养分元素分配及循环特征. 水土保持学报, 2009, 23(2): 143- 147, 152- 152.
    [21] 白雪娟, 曾全超, 安韶山, 张海鑫, 王宝荣. 黄土高原不同人工林叶片-凋落叶-土壤生态化学计量特征. 应用生态学报, 2016, 27(12): 3823- 3830.
    [22] 张海鑫, 曾全超, 安韶山, 白雪娟, 王宝荣. 黄土高原子午岭林区主要林分生态化学计量学特征. 自然资源学报, 2017, 32(6): 1043- 1052.
    [23] 田超, 孟平, 张劲松, 孙守家, 黄辉, 贾长荣, 李建中. 降雨对华北石质山地侧柏林土壤温湿度及水分运移的影响. 林业科学研究, 2015, 28(3): 365- 373.
    [24] 张连金, 胡艳波, 赵中华, 孙长忠. 北京九龙山侧柏人工林空间结构多样性. 生态学杂志, 2015, 34(1): 60- 69.
    [25] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农学科学出版社, 2000: 106- 185.
    [26] 王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰. 中国四种森林类型主要优势植物的C∶N∶P化学计量学特征. 植物生态学报, 2011, 35(6): 587- 595.
    [27] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001- 11006.
    [28] Han W X, Fang J Y, Guo D L, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168(2): 377- 385.
    [29] 李慧, 王百田, 刘涛. 晋西黄土区不同森林树种及其林地土壤养分含量的变化. 林业科学研究, 2016, 29(4): 587- 595.
    [30] 杜满义, 范少辉, 刘广路, 封焕英, 郭宝华, 唐晓鹿. 中国毛竹林碳氮磷生态化学计量特征. 植物生态学报, 2016, 40(8): 760- 774.
    [31] 吴统贵, 陈步峰, 肖以华, 潘勇军, 陈勇, 萧江华. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学. 植物生态学报, 2010, 34(1): 58- 63.
    [32] 阎恩荣, 王希华, 郭明, 仲强, 周武. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征. 植物生态学报, 2010, 34(1): 48- 57.
    [33] 于海玲, 樊江文, 钟华平, 李愈哲. 青藏高原区域不同功能群植物氮磷生态化学计量学特征. 生态学报, 2017, 37(11): 3755- 3764.
    [34] 曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 5484- 5492.
    [35] 任书杰, 于贵瑞, 陶波, 王绍强. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 2007, 28(12): 2665- 2673.
    [36] Reich P B, Tjoelker M G, Pregitzer K S, Wright I J, Oleksyn J, Machado J L. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 2008, 11(8): 793- 801.
    [37] 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征. 植物生态学报, 2017, 41(1): 126- 135.
    [38] 郑德祥, 蔡杨新, 杨玉洁, 钟兆全, 缪三华, 吴文斌. 闽北闽粤栲天然林主要树种幼树器官碳氮磷化学计量特征分析. 林业科学研究, 2017, 30(1): 154- 159.
    [39] 赵一娉, 曹扬, 陈云明, 彭守璋. 黄土丘陵沟壑区森林生态系统生态化学计量特征. 生态学报, 2017, 37(16): 5451- 5460.
    [40] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 2003, 40(3): 523- 534.
    [41] Güsewell S. N∶ P ratios in terrestrial plants: variation and functional significance. New Phytologist, 2004, 164(2): 243- 266.
    [42] Cui Q, Lü X T, Wang Q B, Han X G. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant and Soil, 2010, 334(1/2): 209- 219.
    [43] 平川, 王传宽, 全先奎. 环境变化对兴安落叶松氮磷化学计量特征的影响. 生态学报, 2014, 34(8): 1965- 1974.
    [44] Craine J M, Lee W G, Bond W J, Williams R J, Johnson L C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 2005, 86(1): 12- 19.
    [45] Kerkhoff A J, Fagan W F, Elser J J, Enquist B J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. American Naturalist, 2006, 168(4): E103-E122.
    [46] 陈婵, 王光军, 赵月, 周国新, 李栎, 高吉权. 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系. 生态学报, 2016, 36(23): 7614- 7623.
    [47] Yuan Z Y, Chen H Y H, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications, 2011, 2: 344.
    [48] 安申群, 贡璐, 朱美玲, 李红林, 解丽娜, 罗艳. 塔里木盆地北缘典型荒漠植物根系化学计量特征及其与土壤理化因子的关系. 生态学报, 2017, 37(16):5444- 5450.
    [49] 徐冰, 程雨曦, 甘慧洁, 周文嘉, 贺金生. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联. 植物生态学报, 2010, 34(1): 29- 38.
    [50] 吴统贵, 吴明, 刘丽, 萧江华. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 2010, 34(1): 23- 28.
    [51] 李红林, 贡璐, 洪毅. 克里雅绿洲旱生芦苇根茎叶C、N、P化学计量特征的季节变化. 生态学报, 2016, 36(20): 6547- 6555.
    [52] 牛得草, 李茜, 江世高, 常佩静, 傅华. 阿拉善荒漠区6种主要灌木植物叶片C∶N∶P化学计量比的季节变化. 植物生态学报, 2013, 37(4): 317- 325.
    [53] Oleksyn J, Reich P B, Zytkowiak R, Karolewski P, Tjoelker M G. Nutrient conservation increases with latitude of origin in european Pinus sylvestris populations. Oecologia, 2003, 136(2): 220- 235.
    [54] Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821- 827.
    [55] Han W X, Tang L Y, Chen Y H, Fang J Y. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS One, 2013, 8(12): e83366.
    [56] 赵亚芳, 徐福利, 王渭玲, 王玲玲, 王国兴, 孙鹏跃, 白小芳. 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化. 植物学报, 2014, 49(5): 560- 568.
    [57] Townsend A R, Cleveland C C, Asner G P, Bustamante M M C. Controls over foliar N∶P ratios in tropical rain forests. Ecology, 2007, 88(1): 107- 118.