基于切换系统的变体飞行器鲁棒自适应控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Robust adaptive control for morphing aircraft based on switching system
  • 作者:梁小辉 ; 王青 ; 董朝阳
  • 英文作者:LIANG Xiaohui;WANG Qing;DONG Chaoyang;School of Automation Science and Electrical Engineering,Beihang University;School of Aeronautic Science and Engineering,Beihang University;
  • 关键词:变体飞行器 ; 切换系统 ; 鲁棒自适应控制 ; 模型依赖驻留时间(MDDT) ; 参考模型 ; 抗干扰
  • 英文关键词:morphing aircraft;;switching system;;robust adaptive control;;mode-dependent dwell time(MDDT);;reference model;;disturbance rejection
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:北京航空航天大学自动化科学与电气工程学院;北京航空航天大学航空科学与工程学院;
  • 出版日期:2018-09-05 15:51
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.313
  • 基金:国家自然科学基金(61873295,61833016);; 航空科学基金(2016ZA51011)~~
  • 语种:中文;
  • 页:BJHK201903014
  • 页数:8
  • CN:03
  • ISSN:11-2625/V
  • 分类号:113-120
摘要
针对变体飞行器变形过程的控制问题,将切换系统理论与多变量自适应控制理论相结合,提出了一种基于切换系统的鲁棒自适应控制器设计方法。首先,建立了变体飞行器纵向短周期线性切换模型,描述了飞行器的整个变形过程;然后,设计了一种改进的鲁棒自适应控制律,抑制了各类干扰和不确定性对系统的影响,实现了切换系统对参考模型的良好跟踪;最后,提出了一种基于模型依赖驻留时间(MDDT)的切换控制律,保证了变体飞行器在变形切换过程中的稳定性,利用Lyapunov函数方法证明了本文方法最终一致有界。仿真验证表明,在存在外部干扰和各类不确定性的情况下,本文方法能保证飞行器在变形过程中精确跟踪参考模型,且具有较好的抗干扰能力。
        For the morphing process control of morphing aircraft,by combining the switching system theory and the multivariable adaptive control theory,a robust adaptive controller design method based on the switched system is proposed in this paper. Frist,the longitudinal short-period linear switching model for morphing aircraft is established,which can describe the whole morphing process. Second,an improved robust adaptive control law to reject the external disturbance and uncertainties is designed,which can guarantee the switching system's good tracking of the reference model. Then,based on the mode-dependent dwell time,a switching control law is put forward,which ensures the stability of the morphing aircraft in morphing process.According to the Lyapunov function methods,the ultimate uniform bound of the proposed approach is proved.The simulation results show that the proposed approach can guarantee the accurate tracking of the reference model during the morphing process with good disturbance rejection ability under the conditions of external disturbance and various uncertainties.
引文
[1]YUE T,ZHANG X Y,WANG L X,et al.Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing[J].Aerospace Science&Technology,2017,70:328-338.
    [2]JIANG W L,DONG C Y,WANG Q.A systematic method of smooth switching LPV controllers design for a morphing aircraft[J].Chinese Journal of Aeronautics,2015,28(6):1640-1649.
    [3]殷明,陆宇平,何真.变体飞行器LPV建模与鲁棒增益调度控制[J].南京航空航天大学学报,2013,45(2):202-208.YIN M,LU Y P,HE Z.LPV Modeling and robust gain scheduling control of morphing aircraft[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(2):202-208(in Chinese).
    [4]AFONSO F,VALE J,LAU F,et al.Performance based multidisciplinary design optimization of morphing aircraft[J].Aerospace Science and Technology,2017,67:1-12.
    [5]AJAJ R M,BEAVERSTOCK C M,FRISWELL M I.Morphing aircraft:The need for a new design philosophy[J].Aerospace Science and Technology,2016,49:154-166.
    [6]SU H Q,HUANG Z,BAO X X,et al.Morphing process research of UAV with PID controller[J].Procedia Engineering,2015,99:873-877.
    [7]WU Z H,LU J C,ZHOU Q,et al.Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J].Nonlinear Dynamics,2016,87(4):2367-2383.
    [8]WANG L,LIU C S,GONG H J.A novel robust controller with command filter for uncertain morphing aircraft[J].International Journal of Computer and Electrical Engineering,2018,10(1):523-523.
    [9]AHMADI A A,PARRILO P A.Sum of squares certificates for stability of planar,homogeneous,and switched systems[J].IEEE Transaction on Automatic Control,2017,62(10):5269-5273.
    [10]YUAN S,SCHUTTER B D,BALDI S.Robust adaptive tracking control of uncertain slowly switched linear systems[J].Nonlinear Analysis Hybrid Systems,2018,27:1-12.
    [11]WANG R H,XING J C,XIANG Z R.Finite-time stability and stabilization of switched nonlinear systems with asynchronous switching[J].Applied Mathematics and Computation,2018,316(1):229-244.
    [12]ZHAO X D,SHI P,YIN Y F,et al.New results on stability of slowly switched systems:A multiple discontinuous Lyapunov function approach[J].IEEE Transaction on Automatic Control,2016,62(7):3502-3509.
    [13]HE X,ZHAO J.Multiple Lyapunov functions with blending for induced l2-norm control of switched LPV systems and its application to an F-16 aircraft model[J].Asian Journal of Control,2014,16(1):149-161.
    [14]王青,王通,后德龙,等.基于速度线性化的变体飞行器鲁棒LPV控制[J].系统工程与电子技术,2014,36(6):1130-1136.WANG Q,WANG T,HOU D L,et al.Robust LPV control for morphing vehicles via velocity-based linearization[J].System Engineering and Electronics,2014,36(6):1130-1136(in Chinese).
    [15]CHENG H Y,DONG C Y,JIANG W L,et al.Non-fragile switched H∞control for morphing aircraft with asynchronous switching[J].Chinese Journal of Aeronautics,2017,30(3):1127-1139.
    [16]江未来,董朝阳,王通,等.变体飞行器平滑切换LPV鲁棒控制[J].控制与决策,2016,31(1):66-72.JIANG W L,DONG C Y,WANG T,et al.Smooth switching LPV robust control for morphing aircraft[J].Control and Decision,2016,31(1):66-72(in Chinese).
    [17]SEIGLER T M.Dynamics and control of morphing aircraft[D].Charlottesville:Virginia Polytechnic Institute and State University,2005:30-55
    [18]ZHAO X D,YIN S,LI H Y,et al.Switching stabilization for a class of slowly switched systems[J].IEEE Transactions on Automatic Control,2014,60(1):221-226.
    [19]XU S Y,CHEN T W.Robust H∞control for uncertain stochastic systems with state delay[J].IEEE Transactions on Automatic Control,2002,47(12):2089-2094.
    [20]TAO G.Multivariable adaptive control:A survey[J].Automatica,2014,50(11):2737-2764.