高速动车组车下设备悬挂系统的解耦优化设计方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:On the Decoupling Optimization Design Method for under Chassis Equipment Suspension System in High-speed EMU Train
  • 作者:夏张辉 ; 周劲松 ; 宫岛 ; 孙文 ; 孙煜
  • 英文作者:XIA Zhanghui;ZHOU Jinsong;GONG Dao;SUN Wenjing;SUN Yu;Institute of Railway & Urban Rail Transit, Tongji University;
  • 关键词:高速动车组 ; 车下设备 ; 悬挂系统 ; 橡胶元件 ; 解耦度
  • 英文关键词:high-speed EMU train;;under chassis equipment;;suspension system;;rubber element;;decoupling degree
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:同济大学铁道与城市轨道交通研究院;
  • 出版日期:2019-03-15
  • 出版单位:铁道学报
  • 年:2019
  • 期:v.41;No.257
  • 基金:国家自然科学基金(51805373)
  • 语种:中文;
  • 页:TDXB201903010
  • 页数:8
  • CN:03
  • ISSN:11-2104/U
  • 分类号:77-84
摘要
基于动力吸振理论,优化设计高速动车组车下设备固有频率,并研究车下设备耦合振动对车体振动性能的影响及其机理。随后分别提出了两种车下设备悬挂系统的解耦优化设计方法——正向解耦法和逆向解耦法。以解耦度和最优频率为优化目标,以橡胶元件三向刚度为约束条件,优化设计了橡胶元件的三向刚度。两种优化方法对比分析表明,车下设备以浮沉振动为主的振型均可获得良好的解耦度,振型频率可保持在最优设计频率附近,悬挂系统减振效果明显。与正向解耦法相比,逆向解耦法计算速度较慢,但设计效果更好,减振效果更佳,在实际运用中,可根据具体的计算速度与设计效果要求,合理选择解耦优化方法。
        Based on the theory of dynamic vibration absorber, the inherent frequency of under chassis equipment was optimized. The influence of the coupling vibration of the under chassis equipment on the vehicle vibration performance and its mechanism was studied. Then two decoupling optimization design methods for under chassis equipment suspension system were proposed in this paper, which were forward decoupling method and inverse decoupling method. The three-direction stiffness of the rubber component in the under chassis equipment suspension system was collaboratively optimized by setting the decoupling degree and optimal frequency as optimization objectives, while the three-direction stiffness of the rubber component was set as the constraint condition. The comparison of the two optimization methods shows that the under chassis equipment can obtain favorable decoupling degrees in bouncing vibration mode, with the frequency of the vibration mode being kept near the optimal design frequency, resulting in significant damping effect of the suspension system. Compared with the forward decoupling method, the inverse decoupling method is slower in calculation speed, but better in design effect and damping effect. In practice, the decoupling optimization design methods can be selected according to the specific calculation speed and design effect.
引文
[1] 宫岛, 周劲松, 孙文静,等. 高速列车车下设备模态匹配及试验研究[J]. 铁道学报, 2014,36(10):13-20.GONG Dao, ZHOU Jingsong, SUN Wenjing, et al. Modal Matching between Suspended Equipment and Car Body of a High-speed Railway Vehicle and In-situ Experiment[J]. Journal of the China Railway Society, 2014, 36(10), 13-20.
    [2] 张相宁,李明高.动车组车下吊挂设备吊装装置的橡胶减振器研究[J]. 大连交通大学学报, 2012,33(5):19-22.ZHANG Xiangning, LI Minggao. Study on Rubber Isolator of Hoisting Device for Hanging EMU Equipment[J]. Journal of Dalian Jiaotong University, 2012,33(5):19-22.
    [3] 周劲松,张伟,孙文静,等. 铁道车辆弹性车体动力吸振器减振分析[J]. 中国铁道科学,2009,30(3):86-90.ZHOU Jinsong, ZHANG Wei, SUN Wenjing, et al. Vibration Reduction Analysis of the Dynamic Vibration Absorber on the Flexible Carbody of Railway Vehicles[J].China Railway Science, 2009, 30(3): 86-90.
    [4] 周劲松. 铁道车辆振动与控制[M]. 北京:中国铁道出版社, 2012.
    [5] MA F, MORZFELD M, IMAM A. The Decoupling of Damped Linear Systems in Free or Forced Vibration[J]. Journal of Sound & Vibration, 2010, 329(15):3182-3202.
    [6] JEONG T, SINGH R. Analytical Methods of Decoupling the Automotive Engine Torque Roll Axis[J]. Journal of Sound & Vibration, 2000, 234(1):85-114.
    [7] BENAROYA H. Mechanical Vibration Analysis, Uncertainites and Control[M]. New York: Marcel Dekker Incorporation, 2004:533-535.
    [8] CHEN Y C, ZHANG B J, CHEN S Z. Model Reduction Technique Tailored to the Dynamic Analysis of a Beam Structure under a Moving Load[J]. Shock and Vibration, 2014:406093:1-13.
    [9] JACQUOT R G. Optimal Dynamic Vibration Absorbers for General Beam Systems[J]. Journal of Sound & Vibration, 1978, 60(4):535-542.
    [10] GONG D, ZHOU J, SUN W. Influence of Under-chassis-suspended Equipment on High-speed EMU Trains and the Design of Suspension Parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail & Rapid Transit, 2016, 230(8):1790-1802.
    [11] 张英会. 弹簧手册[M]. 北京:机械工业出版社, 2008.
    [12] 陈树勋, 李志强, 韦齐峰. 汽车发动机悬置系统的严格解耦与优化设计研究[J]. 工程力学, 2013, 30(9):177-183.CHEN Shuxun,LI Zhiqiang,WEI Qifeng.Study on Strictly Decoupling and Optimization Design of Automotive Powertrain Mounting System[J].Engineering Mechanics, 2013, 30(9):177-183.
    [13] 王福天,周劲松,任利惠.用于高速车辆动态仿真的轨道谱分析[J].铁道学报,2002, 24(5): 21-27.WANG Futian, ZHOU Jinsong, REN Lihui. Analysis on Track Spectrum Density for Dynamic Simulations of High-speed Vehicles[J]. Journal of the China Railway Society,2002, 24(5): 21-27.
    [14] 孙蓓蓓,张启军,孙庆鸿,等.汽车发动机悬置系统解耦方法研究[J]. 振动工程学报, 1994, 7(3): 240-245.SUN Beibei, ZHANG Qijun, SUN Qinhong,et al. Study on Decoupled Engine Mounting System[J]. Journal of Vibration Engineering,1994, 7(3): 240-245.
    [15] 刘成, 李一兵, 袁泉,等. 基于完全信息的车速建模及Moore-Penrose广义逆求解[J]. 汽车工程, 2003, 25(6):621-624.LIU Cheng, LI Yibing, YUAN Quan, et al. A Vehicle Speed Model Based on Complete Information and its Solution by the Method of Moore-Penrose Generalized Matrix Inverse[J]. Automotive Engineering, 2003, 25(6): 621-624.
    [16] HOLLAND, JOHN H. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[J]. Ann Arbor, 1992, 6(2):126-137.
    [17] 吉根林. 遗传算法研究综述[J]. 计算机应用与软件, 2004, 21(2):69-73.JI Genlin.Survey on Genetic Algorithm[J]. Computer Appiications and Software,2004,21(2):69-73.