饲料中添加木聚糖酶对刺参幼参生长、消化和体腔液酶活力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of dietary xylanase on growth,digestion and immune enzyme activity in sea cucumber Apostichopus japonicus
  • 作者:武明欣 ; 王雅平 ; 李培玉 ; 张利民 ; 李宝山 ; 孙永智 ; 魏佳丽 ; 王际英
  • 英文作者:WU Ming-xin;WANG Ya-ping;LI Pei-yu;ZHANG Li-min;LI Bao-shan;SUN Yong-zhi;WEI Jia-li;WANG Ji-ying;Key Laboratory for Shandong Marine Ecological Restoration,Shandong Marine Resource and Environment Research Institute;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University;Shanghai Engineering Research Center of Aquaculture,Shanghai Ocean University;Centre for Research on Environmental Ecology and Fish Nutrition ( CREEFN) ,Ministry of Agriculture,Shanghai Ocean University;
  • 关键词:刺参 ; 木聚糖酶 ; 生长 ; 消化 ; 免疫酶活力
  • 英文关键词:Apostichopus japonicus;;xylanase;;growth;;digestion;;immune enzyme activity
  • 中文刊名:DLSC
  • 英文刊名:Journal of Dalian Ocean University
  • 机构:山东省海洋资源与环境研究院山东省海洋生态修复重点实验室;上海海洋大学水产科学国家级实验教学示范中心;上海海洋大学上海水产养殖工程技术研究中心;上海海洋大学农业部鱼类营养与环境生态研究中心;
  • 出版日期:2018-05-16 09:56
  • 出版单位:大连海洋大学学报
  • 年:2018
  • 期:v.33
  • 基金:山东省现代农业产业技术体系刺参产业创新团队项目(SDAIT-22-06);; 山东省重点研发计划项目(2016GSF115005);; 烟台市科技发展计划项目(2015ZH075)
  • 语种:中文;
  • 页:DLSC201803008
  • 页数:7
  • CN:03
  • ISSN:21-1575/S
  • 分类号:49-55
摘要
为探讨木聚糖酶添加量对刺参Apostichopus japonicus生长、体成分、消化酶和体腔液酶活力的影响,在饲料中添加不同水平(0、0.03%、0.06%、0.09%、0.12%和0.24%)的木聚糖酶制成6种等氮等能试验饲料,试验设6组,每组设3个平行,每个平行放体质量为(7.73±0.09)g的幼参50头,分别用6种饲料进行投喂,共进行56 d养殖试验。结果表明:饲料中添加木聚糖酶显著提高了幼参增重率和特定生长率(P<0.05),且0.09%木聚糖酶添加组显著高于其他各组(P<0.05),各添加组增重率与对照组相比均显著提高(P<0.05);木聚糖酶添加组幼参体壁粗蛋白质含量显著高于对照组(P<0.05),0.06%~0.24%木聚糖酶添加组幼参粗脂肪含量显著高于对照组(P<0.05);0.06%~0.12%木聚糖酶添加组肠道蛋白酶活力显著高于对照组(P<0.05),0.24%添加组淀粉酶活力显著高于其他各组(P<0.05);幼参体腔液中溶菌酶、过氧化氢酶、谷草转氨酶和谷丙转氨酶活力均随木聚糖酶添加量的增加呈先升高后降低的趋势,0.06%~0.12%添加组显著高于对照组(P<0.05)。研究表明,饲料中添加木聚糖酶可显著提高刺参生长、体成分、消化酶和体腔液酶活力,以增重率为评价指标,折线回归分析得出,对平均体质量为(7.73±0.09)g的刺参,其饲料中木聚糖酶最适添加量为900 mg/kg。
        A 56-day feeding trial was conducted to evaluate the effect of xylanase on growth performance,body composition,digestive enzyme activity and immune enzyme activity of sea cucumber with initial body weight of( 7.73±0.09) g. Juvenile sea cucumber were reared in cylindrical fiber glass tanks( 70 cm×80 cm) at a density of50 individuals per tank and fed six isonitrogenous and isoenergergetic diets containing 0,0.03%,0.06%,0.09%,0.12% and 0.24% xylanase with 3 replicates at water temperature of( 19±1) ℃. The results showed that there was significantly higher growth performance in the sea cucumber fed diets containing xylanase than that in the other groups( P<0.05),significantly higher weight gain rate( WGR) in the sea cucumber fed diets containing 0.03%-0.24% xylanase compared to control group( P<0.05). The sea cucumber fed the diet containing xylanase had significantly higher crude protein in body wall than the sea cucumber in the control group did( P<0.05). There was significantly higher crude lipid content in the sea cucumber in 0.06%-0.24% xylanase groups than that in the control group( P<0.05). The sea cucumber fed the diet containing xylanase at a rate of 0. 06%-0. 12% had significantly higher intestinal trypsin activities than the sea cucumber in the control group did( P < 0.05). Amylase activity was found to be significantly higher in the 0.24% xylanase group than that in the other groups( P<0.05). The activities of lysozyme( LZM),catalase( CAT),glutamic-oxalacetic transaminase( AST),glutamic-pyruvic transaminase( ALT) and superoxide dismutase( SOD) were shown an increasing tendency first and then decrease with the increasing dietary xylanase,significantly higher LZM,and CAT activities in coelomic fluid of sea cucumber fed the diet containing xylanase at dose of 0. 06%-0.12%( P < 0. 05). The findings indicate that the addition of xylanase leads to improve growth performance,body composition,digestive enzyme activity and immunity capabilities of sea cucumber,and that supplementation of xylanase at a dose of 900 mg/kg is of the optimal level for sea cucumber by Broken-line regression of WGR.
引文
[1]Smith V J,Brown J H,Hauton C.Immunostimulation in crustaceans:does it really protect against infection?[J].Fish&Shellfish Immunology,2003,15(1):71-90.
    [2]石军,陈安国.木聚糖酶的应用研究进展[J].中国饲料,2002,(4):10-12.
    [3]阮同琦,赵祥颖,刘建军.木聚糖酶及其应用研究进展[J].山东食品发酵,2008(1):42-45.
    [4]白雪峰.木聚糖酶在饲料中的应用进展[J].中国畜牧兽医,2004,31(12):11-13.
    [5]王韦华,瞿明仁.浅谈几种常见酶制剂的研究及其应用[J].饲料工业,2006,27(24):55-59.
    [6]高春生,刘忠虎,肖传斌.木聚糖酶对草鱼生长性能和消化率的影响[J].饲料研究,2006(8):48-49.
    [7]方微,单玉萍,李峰,等.木聚糖酶的作用机理及其在饲料中的应用[J].中国饲料,2011(21):21-24.
    [8]Choct M,Hughes R J,Wang J,et al.Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J].Br Poult Sci,1996,37(3):609-621.
    [9]Preston C M,Mc Cracken K J,Mc Allister A.Effect of diet form and enzyme supplementation on growth,efficiency and energy utilisation of wheat-based diets for broilers[J].Br Poult Sci,2000,41(3):324-331.
    [10]张玲,聂国兴,周洪琪.木聚糖酶对鲫鱼生长性能和小肠绒毛的影响[J].浙江海洋学院学报:自然科学版,2006,25(2):133-137.
    [11]李红岗,郭德姝,李辉.木聚糖酶添加量对黄河鲤血糖水平及增重率的影响[J].河南水产,2010(2):33-34.
    [12]程会昌,霍军,宋予振,等.木聚糖酶在黄河鲤鱼饲料中的应用[J].安徽农业科学,2006,34(13):3077,3079.
    [13]聂国兴,明红,郑俊林,等.木聚糖酶对尼罗罗非鱼血液生理生化指标的影响[J].大连水产学院学报,2007,22(5):361-365.
    [14]聂国兴,王俊丽,朱命炜,等.小麦基础饲料添加木聚糖酶对尼罗罗非鱼肠道食糜粘度和绒毛、微绒毛发育的影响[J].水产学报,2007,31(1):54-61.
    [15]刘伟成,冀德伟,周志明,等.木聚糖酶添加对条石鲷幼鱼能量收支的影响[J].宁波大学学报:理工版,2010,23(3):6-10.
    [16]黄燕华,王国霞,黄文庆,等.酶制剂对南美白对虾幼虾生长、体组成及非特异免疫的影响[C]//第三届全国酶制剂在饲料工业中的应用学术研讨会论文集.广州:中国畜牧兽医学会,2009.
    [17]杨志刚,陈乃松,郑剑伟,等.酶解小麦对凡纳滨对虾生长性能的影响[J].粮食与饲料工业,2009(2):38-40.
    [18]黄峰,张丽,周艳萍,等.木聚糖酶在制粒前后的热稳定性及对异育银鲫生长的影响[J].粮食与饲料工业,2008(1):29-31.
    [19]刘凯,张玲,曹香林,等.木聚糖酶在鲤鱼小麦基础饲料中的应用研究[J].水利渔业,2008,28(4):55-57.
    [20]姜婷婷.外源添加木聚糖酶对幼建鲤生长性能、消化吸收能力、肠道菌群和免疫功能的影响[D].雅安:四川农业大学,2013.
    [21]钟国防,周洪琪.木聚糖酶和复合酶制剂PS对尼罗罗非鱼生长性能、非特异性免疫能力的影响[J].海洋渔业,2005,27(4):286-291.
    [22]明红,刘涌涛,杜习翔,等.木聚糖酶对尼罗罗非鱼生长及血脂血糖水平的影响[J].新乡医学院学报,2006,23(6):556-558.
    [23]聂国兴,明红,张玲,等.外源木聚糖酶对尼罗罗非鱼消化器官消化酶活力及分布的影响[J].华北农学报,2006,21(4):123-130.
    [24]梁永,陈中平,杨洪森.木聚糖酶在饲料应用上的研究进展[J].饲料研究,2012(4):30-31.
    [25]王俊丽,于广丽,刘凯,等.饲料中添加木聚糖酶对尼罗罗非鱼生长性能的影响[J].华北农学报,2007,22(3):178-182.
    [26]刘凯,张玲,聂国兴.小麦基础饲料添加木聚糖酶对鲤鱼体成分及消化酶活力的影响[J].饲料工业,2012,33(14):37-40.
    [27]钟国防,周洪琪,等.木聚糖酶和复合酶制剂PS对尼罗罗非鱼生长性能、消化率以及肌肉营养成分的影响[J].浙江海洋学院学报:自然科学版,2005,24(4):324-329.
    [28]白燕,王维新.刺参肠道蛋白酶、淀粉酶、脂肪酶与纤维素酶活性的测定方法[J].饲料工业,2012,33(20):28-32.
    [29]任庆印,潘鲁青.刺参消化酶性质与活性分布的研究[J].海洋湖沼通报,2013(2):51-56.
    [30]吴韬,张振龙,蔡春芳,等.果胶和木聚糖对中华绒螯蟹生长性能和消化生理的影响[J].动物营养学报,2015,27(7):2282-2291.
    [31]何云,崔金忠,郑素玲,等.木聚糖酶在水产养殖中的应用研究进展[J].广东农业科学,2008,35(10):100-101.
    [32]周金敏,张伟,程时军.非淀粉多糖酶在鱼类饲料中的应用研究[J].饲料研究,2010(7):68-71.
    [33]李旭,章世元,陈四清,等.四种饲料原料对刺参蛋白质代谢及免疫功能的影响[J].广东饲料,2014,23(10):29-32.
    [34]聂品.鱼类非特异性免疫研究的新进展[J].水产学报,1997,21(1):69-73.
    [35]艾庆辉,麦康森.鱼类营养免疫研究进展[J].水生生物学报,2007,31(3):425-430.
    [36]张宇鹏,田燚,商艳鹏,等.镉对刺参幼参体内金属硫蛋白含量及其变化规律的影响[J].大连海洋大学学报,2017,32(2):178-182.
    [37]Lindsay G J H.The significance of chitinolytic enzymes and lysozyme in rainbow trout(Salmo gairdneri)defence[J].Aquaculture,1986,51(3-4):169-173.
    [38]黄峰,张丽,周艳萍,等.复合酶制剂对异育银鲫生长、SOD和溶菌酶活性的影响[J].华中农业大学学报,2008,27(1):96-100.
    [39]孙红梅.饥饿对黄颡鱼血液指标及免疫机能的影响[D].长春:吉林农业大学,2004.
    [40]李清,肖调义,毛华明.生物活性肽对鲤鱼血液生理生化指标的影响[J].长江大学学报:自科版,2005,2(5):27-29.