基于数字钻探的岩石c-φ参数测试方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A testing method for rock c-φ parameter based on digital drilling test technology
  • 作者:王琦 ; 秦乾 ; 高红科 ; 江贝 ; 许硕
  • 英文作者:WANG Qi;QIN Qian;GAO Hongke;JIANG Bei;XU Shuo;Research Center of Geotechnical and Structural Engineering,Shandong University;State Key Laboratory for Geo-mechanics and Deep Underground Engineering,China University of Mining & Technology(Beijing);School of Civil Engineering and Architecture,University of Jinan;
  • 关键词:数字钻探 ; c-φ参数 ; 随钻参数 ; 滑移线
  • 英文关键词:digital drilling;;c-φ parameter;;drilling parameters;;slip-line
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:山东大学岩土与结构工程研究中心;中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室;济南大学土木建筑学院;
  • 出版日期:2019-03-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.294
  • 基金:国家自然科学基金资助项目(51674154);; 山东省重点研发计划资助项目(2017GGX30101);; 中国博士后特别资助项目(2017T100491)
  • 语种:中文;
  • 页:MTXB201903030
  • 页数:8
  • CN:03
  • ISSN:11-2190/TD
  • 分类号:256-263
摘要
岩石黏聚力c和内摩擦角φ(以下简称c-φ参数)的准确测试是进行地下工程支护设计优化及信息化施工的基础。传统的岩石室内试验方法测试步骤繁琐,周期长、成本高,无法进行原位测定。数字钻探技术为现场准确测定岩石力学参数提供了新的途径,实现该技术的关键在于建立随钻参数与岩石c-φ参数间的定量关系。基于此,本文根据岩石切削破碎特征,建立了一种不预设破坏面的岩石切削力学模型,弥补了现有岩石切削力学模型将破坏面假设为平面,从而与岩石受切削时实际的破坏面特征存在差异的不足。基于滑移线理论推导了岩石极限切削力,得到了随钻参数DP(Drilling Parameters)与岩石c-φ参数关系式(DP-cφ关系式)。将利用自主研发的岩体数字钻探测试系统开展室内试验所得到的随钻参数与理论计算得到的结果进行对比分析,两者平均差异率为8.44%,验证了所建立的岩石切削力学模型和DP-cφ关系式的合理性和正确性。在此基础上,提出了岩石c-φ参数数字钻探测定方法,并通过室内试验进行了该方法与传统三轴试验方法测定结果的对比分析,结果表明:两种方法得到的岩石黏聚力和内摩擦角平均差异率均小于10%,证明了本文所提出的数字钻探测定方法的有效性和可行性。该方法实施方便、快捷,可实现现场工程岩体c-φ参数的原位测定。
        The accurate measurement of rock cohesion c and internal friction angle φ( hereinafter referred to as the c-φ parameter) is the basis of optimizing the design of underground engineering support and information construction.The traditional indoor test method has the characteristics of cumbersome testing steps,long cycle and high cost,and cannot carry out in-situ measurement.Therefore,it is necessary to develop an accurate and fast on-site testing method for rock c-φ.Digital drilling testing technology provides a new way for accurate and fast prediction of rock c-φ in-situ,and the key is to establish the quantitative relationship between drilling parameters and rock c-φ.According to the fracture characteristics of rock cutting,a rock cutting mechanics model without prior assumption of failure surface is proposed.This model makes up for the deficiency of the existing rock cutting mechanics model that assumes the failure surface as a plane and thus differs from the actual characteristics of the failure surface in rock cutting.The ultimate cutting force is deduced on the basis of the slip-line theory.Based on this,the relationship between drilling parameters( DP) and c-φ parameter( hereinafter referred to as the DP-cφ relationship) is established.In this paper,the digital drilling test is carried out by using the self-developed digital drilling test system.Compared with the results of theoretical analysis and laboratory test,the average difference is 8.44%,which verifies the rationality and correctness of the rock cutting mechanics model and the DP-cφ relationship.Therefore,a digital drilling measurement method for the rock c-φ parameter is proposed.Compared with the results of this method and traditional triaxial method through laboratory tests,the average difference rate of cohesion and internal friction angle obtained by the two methods are less than 10%,which proves the feasibility and effectiveness of the digital drilling method proposed in this paper.The method is convenient and fast,and can realize in-situ measurement of the c-φ parameter of the rock mass in the field.
引文
[1]GUI M W,SOGA K,BOLTON M D,et al.Instrumented borehole drilling for subsurface investigation[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(4):283-291.
    [2]王琦,秦乾,高松,等.数字钻探随钻参数与岩石单轴抗压强度关系[J].煤炭学报,2018,43(5):506-512.WANG Qi,QIN Qian,GAO Song,et al.Relationship between rock drilling parameters and rock uniaxial compressive strength based on energy analysis[J].Journal of China Coal Society,2018,43(5):506-512.
    [3]叶春时,唐胜利.PDC无心钻头结构参数与钻进速度的关系[J].煤炭学报,1996,21(5):506-512.YE Chunshi,TANG Shengli.Structural parameters and penetration rate of PDC non-coring drill bit[J].Journal of China Coal Society,1996,21(5):506-512.
    [4]YANG W W,YUE Z Q,THAM L G.Automatic monitoring of inserting or retrieving SPT sampler in drillhole[J].Geotechnical Testing Journal,2012,35(3):420-436.
    [5]YUE Z Q,LEE C F,LAW K T,et al.Automatic monitoring of rotarypercussive drilling for ground characterization-illustrated by a case example in Hong Kong[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(4):573-612.
    [6]杨晓峰,康勇,王晓川.岩石钻掘过程钻头受力动力学解析模型[J].煤炭学报,2012,37(3):1596-1600.YANG Xiaofeng,KANG Yong,WANG Xiaochuan.Analytical dynamic model of the drill bit in rock drilling[J].Journal of China Coal Society,2012,37(3):1596-1600.
    [7]TEALE R.The concept of specific energy in rock drilling[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1965,2(1):57-73.
    [8]AALIZAD S A,RASHIDINEJAD F.Prediction of penetration rate of rotary-percussive drilling using artificial neural networks-a case study[J].Archives of Mining Sciences,2012,57(3):715-728.
    [9]KAHRAMAN S.Rotary and percussive drilling prediction using regression analysis[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(7):981-989.
    [10]WYK G V,ELS D N J,AKDOGAN G,et al.Discrete element simulation of tribological interactions in rock cutting[J].International Journal of Rock Mechanics and Mining Sciences,2014,65(1):8-19.
    [11]HUANG S L,WANG Z W.The mechanics of diamond core drilling of rocks[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(3/4):612.
    [12]MOSTOFI M,RASOULI V,MAWULI E.An estimation of rock strength using a drilling performance model:A case study in Blacktip field,Australia[J].Rock Mechanics and Rock Engineering,2011,44(3):305-316.
    [13]KARASAWA H,OHNO T,KOSUGI M,et al.Methods to estimate the rock strength and tooth wear while drilling with rollerbits[J].Journal of Energy Resources Technology,2002,124(3):125-132.
    [14]YA?AR E,RANJITH P G,VIETE D R.An experimental investigation into the drilling and physico-mechanical properties of a rocklike brittle material[J].Journal of Petroleum Science and Engineering,2011,76(3):185-193.
    [15]SCHUNNESSON H.RQD predictions based on drill performance parameters[J].Tunnelling and Underground Space Technology,1996,11(3):345-351.
    [16]SCHUNNESSON H.Rock characteristics using percussive drilling[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(6):711-725.
    [17]TAN Z Y,WANG S J,CAI M F.Similarity identification method on formational interfaces and application in general granite[J].International Journal of Minerals,Metallurgy and Materials,2009,16(2):135-142.
    [18]AKIN S,KARPUZ C.Estimating drilling parameters for diamond bit drilling operations using artificial neural networks[J].International Journal of Geomechanics,2008,8(1):68-73.
    [19]RICHARD T.Determination of rock strength from cutting tests[D].Dissertation,University of Minnesota,1999.
    [20]HUANG H,LECAMPION B,DETOURNAY E.Discrete element modeling of tool-rock interaction I:Rock cutting[J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(13):1913-1929.
    [21]JAIME M C,ZHOU Y,LIN J,et al.Finite element modeling of rock cutting and its fragmentation process[J].International Journal of Rock Mechanics and Mining Sciences,2015,80,137-146.
    [22]ZHOU Y,LIN J.On the critical failure mode transition depth for rock cutting[J].International Journal of Rock Mechanics and Mining Sciences,2013,62,131-137.
    [23]PRYHOROVSKA T O,CHAPLINSKIY S S,KUDRIAVTSEV I O.Finite element modelling of rock mass cutting by cutters for PDC drill bits[J].Petroleum Exploration&Development,2015,42(6):888-892.
    [24]YAHIAOUI M,PARIS J Y,DELBK,et al.Independent analyses of cutting and friction forces applied on a single polycrystalline diamond compact cutter[J].International Journal of Rock Mechanics and Mining Sciences,2016,85:20-26.