高压扭转工艺对TA15钛合金组织和性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of High-pressure Torsion on Microstructure and Properties of TA15 Titanium Alloy
  • 作者:薛克敏 ; 孙建辉 ; 纪小虎 ; 郭威威 ; 李萍
  • 英文作者:Xue Kemin;Sun Jianhui;Ji Xiaohu;Guo Weiwei;Li Ping;Hefei University of Technology;
  • 关键词:TA15钛合金 ; 高压扭转 ; 显微组织 ; 显微硬度
  • 英文关键词:TA15 titanium alloy;;high-pressure torsion(HPT);;microstructure;;microhardness
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:合肥工业大学;
  • 出版日期:2019-04-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.393
  • 基金:国家自然科学基金(51575153,51175137)
  • 语种:中文;
  • 页:COSE201904025
  • 页数:6
  • CN:04
  • ISSN:61-1154/TG
  • 分类号:165-170
摘要
通过高压扭转工艺制备不同扭转圈数的TA15试样,利用金相观察、X射线衍射分析和显微硬度测试,分析高压扭转工艺对TA15钛合金组织和性能的影响。结果表明,变形后试样显微组织沿径向分布不均匀,随着扭转圈数增加,组织中粗大的初生等轴α相逐渐减少,晶粒细化效果明显,材料在(200)晶面出现择优取向;高压扭转变形后,材料的亚晶尺寸减小,微观应变和位错密度显著增加;变形后试样的显微硬度显著提高,且随着扭转圈数的增加,硬度逐渐增加,扭转圈数大于4圈时,显微硬度值趋于饱和。
        TA15 samples with different turning numbers were prepared by high-pressure torsion process. The effects of high-pressure torsion on the microstructure and properties of TA15 titanium alloy were analyzed using metallographic observation, X-ray diffraction analysis and microhardness test. The results show that the microstructures of the specimens are not evenly distributed in the radial direction after deformation. With the increase of turning numbers, the coarse primary equiaxed α phase gradually decreases and the grain refinement effect is obvious. And the material appears preferential orientation in the(200) crystal. After the high-pressure torsional deformation, the size of the sub-crystal decreases, while the microstrain and dislocation density increase significantly. In addition, the microhardness of the deformed specimens increases remarkably. Moreover, the hardness increases with the number of torsion turns increasing. When the number of twists turns is greater than 4, the microhardness tends to a saturation value.
引文
[1]Liu Qixian(刘奇先),Liu Yang(刘杨),Gao Kai(高凯).Aerospace Manufacturing Technology(航天制造技术)[J],2011(4):45
    [2]Li Ping,Ding Yonggen,Yao Pengpeng et al.Journal of Materials Engineering and Performance[J],2016,25(8):3439
    [3]Li Ping(李萍),Xue Kemin(薛克敏),Yao Pengpeng(姚彭彭)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2016,45(6):1495
    [4]Fan X G,Yang H,Gao P F.Journal of Materials Science[J],2011,46(18):6018
    [5]Wu Chuan,Yang He,Li Hongwei.Acta Metallurgica Sinica[J],2013,26(5):533
    [6]He D,Zhu J C,Lai Z H et al.Materials and Design[J],2013,46:38
    [7]VáclavováK,StráskyJ,Polyakova V et al.Materials Science and Engineering A[J],2017,682:220
    [8]Das M,Das G,Ghosh M et al.Materials Science and Engineering A[J],2012,558:525
    [9]Liang Chen,Li Ping,Tian Ye et al.Rare Metal Materials and Engineering[J],2016,45(12):3089
    [10]Chen Y J,Li Y J,Walmsley J C et al.Journal of Materials Science[J],2012,47(12):4838
    [11]Ivanisenko Y,Kilmametov A,R?sner H et al.International Journal of Materials Research[J],2008,99(1):36
    [12]Zhang Wenjing(张文井),Fu Jie(付杰),Huang Yi(黄毅)et al.Journal of Materials and Metallurgy(材料与冶金学报)[J],2015,14(4):298
    [13]Ashida M,Chen P,Doi H et al.Materials Science and Engineering A[J],2015,640:449
    [14]Hu Zhengyang,Cheng Xingwang,Zhang Zhaohui et al.Materials Science and Engineering A[J],2017,684:1
    [15]Tian Ye(田野),Li Ping(李萍),Wang Jiulin(王久林)et al.Journal of Plasticity Engineering(塑性工程学报)[J],2016,23(2):98
    [16]Alfonso A,Jensen D J,Luo G N et al.Fusion Engineering and Design[J],2015,98-99:1924
    [17]Zhao Yan(赵严),Guo Hongzhen(郭鸿镇),Wang Tao(王涛)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2011,40(5):885