氯化钠模板诱导木质素基多孔炭的制备及其超级电容器性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of Sodium Chloride Induced Lignin-Based Porous Carbon and Their Supercapacitor Performances
  • 作者:谢亚桥 ; 赵佳欣 ; 李杰兰 ; 徐子迪 ; 曲江英 ; 田运齐 ; 高峰
  • 英文作者:XIE Yaqiao;ZHAO Jiaxin;LI Jielan;XU Zidi;QU Jiangying;TIAN Yunqi;GAO Feng;Faculty of Chemistry and Chemical Engineering,Liaoning Normal University;School of Environment and Civil Engineering,Dongguan University of Technology;
  • 关键词:多孔炭 ; 木质素 ; 盐模板 ; 超级电容器
  • 英文关键词:porous carbon;;lignin;;salt template;;supercapacitor
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:辽宁师范大学化学化工学院;东莞理工学院生态环境与建筑工程学院;
  • 出版日期:2019-04-10
  • 出版单位:应用化学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金联合基金(U1610114);; 辽宁省自然科学基金(201602458);; 辽宁省博士启动基金(201601240)~~
  • 语种:中文;
  • 页:YYHX201904013
  • 页数:7
  • CN:04
  • ISSN:22-1128/O6
  • 分类号:123-129
摘要
以木质素为碳源,氯化钠为模板,通过低温回流使木质素包覆在氯化钠外层,高温煅烧获得木质素基多孔炭,研究了其作为电极材料在超级电容器中的应用。结果表明,改变煅烧温度可调控所得样品的孔结构,其比表面积在548~600 m~2/g之间可变,且随着煅烧温度升高,比表面积和孔体积先增大后减少。700℃煅烧所得样品具有最大的比表面积,并表现出最高的电容性能,其在6 mol/L KOH电解液中比电容可达252 F/g,有效面积电容高达31. 2μF/cm~2,模板氯化钠可清洗分离并可循环利用。提出了一种废弃物高附加值制备超级电容器用多孔炭的绿色方法。
        A novel class of lignin-based porous carbon( PC) for supercapacitor electrode was successfully fabricated using lignin as the carbon precursor and NaCl as the template by reflux at low temperature and calcination at high temperature. The results indicate that the porous structures of the obtained samples can be regulated by varying the calcination temperature,where the surface area and pore volume of samples firstly increases then decreases with the increase of the temperature. As a result,the specific surface area of the obtained sample can be tailored in the range of 548 ~ 600 m~2/g. PC calcinated at 700 ℃ has the largest surface area and exhibits the highest specific capacitance of 252 F/g and an effective areal capacitance of31. 2 μF/cm~2 in 6 mol/L KOH solution. NaCl template can be cycled by washing from the products. This paper proposes a green method for synthesis of high value-added porous carbon from waste materials.
引文
[1]Shi H. Activated Carbons and Double Layer Capacitance[J]. Electrochim Acta,1996,41(10):1633-1639.
    [2]Pandolfo A G,Hollenkamp A F. Carbon Properties and Their Role in Supercapacitors[J]. J Power Sources,2006,157(1):11-27.
    [3]Zhang L L,Zhao X S. Carbon-Based Materials as Supercapacitor Electrodes[J]. Chem Soc Rev,2009,38(9):2520-2531.
    [4]Gao F,Qu J Y,Geng C,et al. Self-templating Synthesis of Nitrogen-Decorated Hierarchical Porous Carbon from Shrimp Shell for Supercapacitors[J]. J Mater Chem A,2016,4(19):7445-7452.
    [5]Gao F,Shao G H,Qu J Y,et al. Tailoring of Porous and Nitrogen-Rich Carbons Derived from Hydrochar for HighPerformance Supercapacitor Electrodes[J]. Electrochim Acta,2015,155:201-208.
    [6]MontanéD,Torné-Fernández V,Fierro V. Activated Carbons from Lignin:Kinetic Modeling of the Pyrolysis of Kraft Lignin Activated with Phosphoric Acid[J]. Chem Eng J,2005,106(1):1-12.
    [7]YAN Tao,LI Yunyan,SONG Guangsen,et al. Study on Preparation of Lignin Activated Carbon with Zinc Chloride[J]. J Anhui Agric Sci,2008,36(28):12094-12096(in Chinese).颜涛,李云雁,宋光森,等.氯化锌法制备木质素活性炭的研究[J].安徽农业科学,2008,36(28):12094-12096.
    [8]Guo Y,Qi J,Jiang Y,et al. Performance of Electrical Double Layer Capacitors with Porous Carbons Derived from Rice Husk[J]. Mater Chem Phys,2003,80(3):704-709.
    [9]Wu F C,Tseng R L,Hu C C,et al. Effects of Pore Structure and Electrolyte on the Capacitive Characteristics of Steam-and KOH-Activated Carbons for Supercapacitors[J]. J Power Sources,2005,144(1):302-309.
    [10]Zhang S,Tian K,Cheng B H,et al. Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes[J]. ACS Sustain Chem Eng,2017,5(8):6682-6691.
    [11]Song S,Ma F,Wu G,et al. Facile Self-Templating Large Scale Preparation of Biomass-Derived 3D Hierarchical Porous Carbon for Advanced Supercapacitors[J]. J Mater Chem A,2015,3(35):18154-18162.
    [12]Cheng P,Gao S,Zang P,et al. Hierarchically Porous Carbon by Activation of Shiitake Mushroom for Capacitive Energy Storage[J]. Carbon,2015,93:315-324.
    [13]ZHANG Benbin,LIU Yunquan,YE Yueyuan. Progress in Preparation of Activated Carbon and Its Activation Mechanism[J]. Mod Chem Ind,2014,34(3):34-39(in Chinese).张本镔,刘运权,叶跃元.活性炭制备及其活化机理研究进展[J].现代化工,2014,34(3):34-39.
    [14]Lee D,Jung J Y,Jung M J,et al. Hierarchical Porous Carbon Fibers Prepared Using a Si O2,Template for HighPerformance EDLCs[J]. Chem Eng J,2015,263:62-70.
    [15]LI Penghui,MA Xiaohua. Hierarchical Porous Carbon Applied in Electric Double Layer Capacitor[J]. Battery BM,2013,43(5):247-249(in Chinese).李鹏辉,马晓华.分级多孔碳用于双电层电容器[J].电池,2013,43(5):247-249.
    [16]White R J,Antonietti M,Titirici M M. Naturally Inspired Nitrogen Doped Porous Carbon[J]. J Mater Chem,2009,19(45):8645-8650.
    [17]Fechler N,Fellinger T P,Antonietti M.“Salt Templating”:A Simple and Sustainable Pathway Toward Highly Porous Functional Carbons from Ionic Liquids[J]. Adv Mater,2013,25(1):75-79.
    [18]WEN Jialong,CHEN Tianying,SUN Runcang. Research Progress on Separation and Structural Analysis of Lignin in Lignocellulosic Biomass[J]. J Forest Eng,2017,2(5):76-84(in Chinese).文甲龙,陈天影,孙润仓.生物质木质素分离和结构研究方法进展[J].林业工程学报,2017,2(5):76-84.
    [19]HE Yanfeng,LI Xiujin,FANG Wenjie,et al. Studies on Na OH Soild-State Pretreatment on the Cellulosic Structural Changes of Rice Straw[J]. Renew Energy Resour,2007,25(5):31-34(in Chinese).何艳峰,李秀金,方文杰,等. Na OH固态预处理对稻草中纤维素结构特性的影响[J].可再生能源,2007,25(5):31-34.
    [20]REN Junli,SUN Runcang,LIU Chuanfu. Advances in Chemical Modification of Hemicelluloses[J]. Mod Chem Ind,2006,26(s1):68-71(in Chinese).任俊莉,孙润仓,刘传富.半纤维素的化学改性研究进展[J].现代化工,2006,26(s1):68-71.
    [21]QU Yinbo. Industrialization of Cellulosic Ethanol[J]. Prog Chem,2007,19(7):1098-1108(in Chinese).曲音波.纤维素乙醇产业化[J].化学进展,2007,19(7):1098-1108.
    [22]LU Yao,WEI Xianyong,ZONG Zhimin,et al. Structural Investigation and Application of Lignins[J]. Prog Chem,2013,25(5):838-858(in Chinese).路瑶,魏贤勇,宗志敏,等.木质素的结构研究与应用[J].化学进展,2013,25(5):838-858.
    [23]Vanholme R,Demedts B,Morreel K,et al. Lignin Biosynthesis and Structure[J]. Plant Physiol,2010,153(3):895-905.
    [24]Faulon J L,Hatcher P G. Is There Any Order in the Structure of Lignin[J]. Energy Fuels,1994,8(2):402-407.
    [25]Hayashi J,Kazehaya A,Muroyama K,et al. Preparation of Activated Carbon from Lignin by Chemical Activation[J].Carbon,2000,38(13):1873-1878.
    [26]Gong Y,Li D,Luo C,et al. Highly Porous Graphitic Biomass Carbon as Advanced Electrode Materials for Supercapacitors[J]. Green Chem,2017,19(17):4132-4140.
    [27]Guan T,Li K,Zhao J,et al. Template-Free Preparation of Layer-Stacked Hierarchical Porous Carbons from Coal Tar Pitch for High Performance All-Solid-State Supercapacitors[J]. J Mater Chem A,2017,5(30):15869-15878.
    [28]Liang T,Chen C,Li X,et al. Popcorn-Derived Porous Carbon for Energy Storage and CO2Capture[J]. Langmuir,2016,32(32):8042-8049.
    [29]YU Jing,GAO Lizhen,LI Xuelian,et al. Porous Carbons Produced by the Pyrolysis of Green Onion Leaves and Their Capacitive Behavior[J]. New Carbon Mater,2016,31(5):475-484(in Chinese).于晶,高利珍,李雪莲,等.葱叶一步法裂解制备多孔炭及其电容性能研究[J].新型炭材料,2016,31(5):475-484.
    [30]HU Xiaozhou,WANG Jing,TANG Jing. Synthesis of Mixture Salt Activated Porous Carbon from Scaphium Scaphigerum and Its Performance as Supercapacitor Electrode Material[J]. Chinese J Appl Chem,2015,32(5):591-596(in Chinese).呼小洲,王静,唐靖.混合盐活化胖大海基多孔炭的制备及其超级电容器电极材料性能[J].应用化学,2015,32(5):591-596.
    [31]MA Shiyao,DU Hui,GENG Chuang,et al. In situ Synthesis of Nitrogen/Oxygen Co-Doped Porous Carbons Derived from Crab Shells and Their Application as Supercapacitor Electrode Materials[J]. Chinese J Appl Chem,2016,33(11):1316-1321(in Chinese).马诗瑶,杜慧,耿闯,等.蟹壳基氮/氧共掺杂多孔碳的原位制备及其超级电容器性能[J].应用化学,2016,33(11):1316-1321.