常州三山港沉积物污染生物效应及致毒因子初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biological Effects and Toxicity of Polluted Sediment in Sanshangang River, Changzhou
  • 作者:邸子佼 ; 徐东炯 ; 王晋 ; 张海燕 ; 段雪梅 ; 张翔 ; 曹雨平
  • 英文作者:DI Zi-jiao;XU Dong-jiong;WANG Jin;ZHANG Hai-yan;DUAN Xue-mei;ZHANG Xiang;CAO Yu-ping;Changzhou University Environment and Safety Engineering College;Changzhou Environmental Monitoring Center, Key Laboratory for Aquatic Biomonitoring Jiangsu Environmental Protection;
  • 关键词:沉积物 ; 生物效应 ; 致毒因子 ; 三山港
  • 英文关键词:sediment pollution;;biological effect;;heavy metal toxicity;;Sanshangang River
  • 中文刊名:SCAN
  • 英文刊名:Journal of Hydroecology
  • 机构:常州大学环境与安全工程学院;常州市环境监测中心江苏省环境保护水环境生物监测重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:水生态学杂志
  • 年:2019
  • 期:v.40
  • 基金:江苏省环保科研课题(2014004);; 国家水体污染控制与治理科技重大专项(2012ZX07506-003)
  • 语种:中文;
  • 页:SCAN201903006
  • 页数:8
  • CN:03
  • ISSN:42-1785/X
  • 分类号:43-50
摘要
为探讨常州三山港沉积物污染的生物效应,加强沉积物的生态管理,对7个监测断面沉积物进行采样调查。综合大型底栖动物生物群落监测、沉积物生物急性毒性试验及重金属污染分析3种方法反映沉积物污染生物效应状况,通过TIE方法对沉积物的致毒因子进行初步识别。结果显示,各监测断面的大型底栖动物完整性指数B-IBI为0~0.38,评价等级为差至一般;毒性实验表明,沉积物孔隙水费氏弧菌(Vibrio fischeri)相对发光强度为47.9%~82.8%,全泥相钩虾(Gammarus sp.)及梨形环棱螺(Bellamya purificata)10 d存活率分别为36.7%~93.3%和33.3%~76.7%,都具有不同程度的急性毒性,群落监测和实验室分析均说明该河流沉积物在群落及种群水平上存在明显的污染生物效应。孔隙水中加入Na-EDTA后发光细菌急性毒性变化显著,1个断面毒性消除,2个断面接近无毒水平,2个断面毒性改善明显。该河流沉积物锌(Zn)、铜(Cu)、铬(Cr)含量均超过江苏省土壤背景值,除石埝桥断面外,平均地累积指数(I_(geo))均在1.08~2.75,重金属污染水平总体达中-强程度。4个监测断面沉积物Zn含量超过了《GB15618-1995土壤环境质量标准》三级标准;I_(geo)、发光细菌相对发光强度、B-IBI三者结果存在显著-极显著相关性,具有关联响应关系。研究表明,以Zn为首要污染的重金属是常州三山港沉积物污染生物效应的主要致毒因子之一。
        To explore methods of evaluating the biological effects and determine the toxic effects of sediment pollution, we investigated the sediment pollution in Sanshangang River at Changzhou. Heavy metal analysis was combined with macrobenthic community monitoring and acute toxicity testing of sediment and interstitial water. Sediment toxic factors were identified using the toxicity identification evaluation(TIE) method. In April and May 2016, sediment samples were collected at seven monitoring sections in the main stem of Sanshangang River. Acute toxicity tests were carried out on both the sediment and interstitial water. The toxicity of the interstitial water was tested using luminous bacteria(Vibrio fischeri) and a 10-day acute toxicity test of the sediment was conducted using an amphipod(Gammarus sp.) and a snail(Bellamya purificata). The benthic index of biological integrity(B-IBI) across monitoring sites ranged from 0 to 0.38, with evaluation grades from poor to general. The laboratory acute toxicity tests show that the relative luminous intensity of Vibrio fischeri in the sediment pore water was 47.9%-82.8%,and the 10-day survival rates of Gammarus sp. and Bellamya purificata in whole sediment samples were 36.7%-93.3% and 33.3%-76.7%, respectively. The field investigation and laboratory tests both indicated that the sediment had significant pollution effects at community and population levels. After the addition of Na-EDTA into the pore water, the acute toxic response of luminescent bacteria changed significantly. The toxicity of pore water from one monitoring section was eliminated, two sections were nearly non-toxic, and another two sections improved significantly. These results indicate that heavy metals are a primary contributor to sediment toxicity. The content of Zn, Cu and Cr in the sediments at all sampling site exceeded the soil background value of Jiangsu Province. The range of average geoaccumulation index(I_(geo)) was 1.08-2.75, except for the sampling site of Shinian Bridge, indicating moderate to strong heavy metal pollution. The content of Zn at four sites exceeded the Grade Ⅲ standard, as specified in GB15618-1995 Soil Environmental Quality Standards. Statistical analysis showed significant to highly significant correlations among I_(geo), relative luminous intensity of the luminescent bacteria and B-IBI. In summary, the heavy metals, particularly Zn, are among the primary pollutants and source of toxicity threatening the aquatic community in Sanshangang River at Changzhou. The results provide technical support for the ecological management of sediments and provide information on the current condition of sediments in Sanshangang River at Changzhou.
引文
蔡琨,张杰,徐兆安,等,2014.应用底栖动物完整性指数评价太湖生态健康[J].湖泊科学,26(1):74-82.
    孔祥臻,何伟,秦宁,等,2011.重金属对淡水生物生态风险的物种敏感性分布评估[J].中国环境科学,31(9):1555-1562.
    王亚超,徐恒省,翁建中,等,2013.京杭运河苏州市区段大型底栖动物种群结构特征与评价[J].中国环境监测,29(3):79-83.
    王业耀,阴琨,杨琦,等,2014.河流水生态环境质量评价方法研究与应用进展[J].中国环境监测,30(4):1-9.
    王英才,王树磊,胡文,等,2017.生物综合毒性监测技术进展与多源生物预警体系[J].人民长江,48(11):21-26.
    王子健,骆坚平,查金苗,2009.水体沉积物毒性鉴别与评价研究进展[J].环境污染与防治,31(12):35-41.
    吴泳标,张国霞,许玫英,等,2010.发光细菌在水环境生物毒性检测中应用的研究进展[J].微生物学通报,37(8):1222-1226.
    谢季吟,林哲雄,2013.底泥慢性毒性试验的建立与应用-淡水端足类[J].环境分析评论,(7):43-56.
    朱文杰,郑天凌,李伟民,2009.发光细菌与环境毒性检测[M].北京:中国轻工业出版社.
    邹叶娜,蔡焕兴,薛银刚,等,2012.成组生物毒性测试法综合评价典型工业废水毒性[J].生态毒理学报,7(4):381-388.
    Ailbhe M,Michelle G,Barry F,et al,2009.An integrated approach to the toxicity assessment of Irish marine sediments application of porewater Toxicity Identification Evaluation(TIE)to Irish marine sediments[J].Environment International,35:98-106.
    Apitz S E,Davis J W,Finkelstein K,et al,2005.Assessing and managing contaminated sediments:Part I,developing an effective investigation and risk evaluation strategy[J].Integrated Environmental Assessment and Management,1(1):2-8.
    ASTM,2003.Test method for measuring the toxicity of sediment-associated contaminants with fresh water invertebrates[R].E1706-00e1.
    Costa P M,Caeiro S,Vale C,et al,2012.Can the integration of multiple biomarkers and sediment geochemistry aid solving the complexity of sediment risk assessment?Acase study with a benthic fish[J].Environmental Pollution,161:107-120.
    Delongchamp T M,Ridal J J,Lean D R S,et al,2010.Mercury transport between sediments and the overlying water of the St.Lawrence River area of concern near Cornwall,Ontario[J].Environmental Pollution,158(5):1487-1493.
    Hoss S,Ahlf W,Fahnenstich C,et al,2010.Variability of sediment contact tests in freshwater sediments with low-level anthropogenic contamination-Determination of toxicity thresholds[J].Environmental Pollution,158(9):2999-3010.
    ISO 11348-3:2007(E).Water quality-Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri(Luminescent bacteria test)-Method using freeze-dried bacteria[S].
    ISO 16303:2013(E).Water quality-Determination of toxicity of fresh water sediments using Hyalella azteca[S].
    Kadokami K,Li X H,Pan S Y,et al,2013.Screening analysis of hundreds of sediment pollutants and evaluation of their effects on benthic organisms in Dokai Bay,Japan[J].Chemosphere,90(2):721-728.
    Muller G,1969.Index of geoaccumulation in sediments of the Rhine River[J].Geojournal,2(3):108-118.
    Regoli F,Pellegrini D,Cicero A M,et al,2014.A multidisciplinary weight of evidence approach for environmental risk assessment at the Costa Concordia wreck:Integrative indices from Mussel Watch[J].Marine Environmental Research,96:92-104.
    Taowu Ma,Shuangjiao Gong,Ke Zhou,et al,2010.Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa(Reeve) and its utility as a test species for sediment toxicity[J].Journal of Environmental Sciences(China),22(2):304-313.
    USEPA,2000.Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater[R].Washington DC,office of Science and Technology;Duluth,Minnesota,office of Research and Development,EPA/600/R-99/064.
    USEPA,2007.Sediment Toxiciy Identification Evaluation (TIE) Phases I,II and Ⅲ Guidance Documents[S].EPA/600/R-07/080.