聚合人脐带血红蛋白对复苏失血性休克大鼠肺组织的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of PolyCHb on pulmonary tissue of resuscitating hemorrhagic shock rats
  • 作者:李红英 ; 周文涛 ; 李遥金 ; 王京 ; 李燊 ; 王红 ; 杨成民 ; 刘嘉馨
  • 英文作者:LI Hongying;ZHOU Wentao;LI Yaojin;WANG Jing;LI Shen;WANG Hong;YANG Chengmin;LIU Jiaxin;Institute of Blood Transfusion,Chinese Academy of Medical Sciences & Peking Union Medical College;
  • 关键词:聚合人脐带血红蛋白 ; 失血性休克 ; 肺损伤 ; 氧化应激 ; 动物实验 ; 大鼠
  • 英文关键词:polymerized human cord hemoglobin;;hemorrhagic shock;;lung injury;;oxidative stress;;animal experiments;;rats
  • 中文刊名:BLOO
  • 英文刊名:Chinese Journal of Blood Transfusion
  • 机构:中国医学科学院北京协和医学院输血研究所;
  • 出版日期:2019-02-25
  • 出版单位:中国输血杂志
  • 年:2019
  • 期:v.32
  • 基金:中国医学科学院医学与健康科技创新工程(2016-I2M-1-018、2017-I2M-3-021)
  • 语种:中文;
  • 页:BLOO201902011
  • 页数:5
  • CN:02
  • ISSN:51-1394/R
  • 分类号:42-46
摘要
目的探讨不同浓度聚合人脐带血红蛋白(PolyCHb)复苏对失血性休克大鼠肺组织的影响。方法建立Wistar大鼠失血性休克控压模型:将40只健康雄性Wistar大鼠随机均分为假手术(sham)组、生理盐水(对照)组、2%、4%及6%PolyCHb组(8只/组)。sham组:大鼠麻醉后仅行股动、静脉插管;后4组建立大鼠失血性休克控压模型,分别给予生理盐水、生理盐水加相应浓度的PolyCHb复苏。分别在大鼠放血前(基础值)、休克、液体回输后0 h(复苏后0 h)、6 h(复苏后6 h)观测各组大鼠平均动脉压(MAP)、动脉二氧化碳分压(PaCO_2)、肺氧合指数(PaO_2/FiO_2);复苏后6 h以放血法处死大鼠,收集支气管肺泡灌洗液(BALF),测定蛋白含量,取肺组织,测定湿/干重比(W/D)值,另取肺组织制备成10%的组织匀浆,测定丙二醛(MDA)、髓过氧化物酶(MPO)、超氧化物歧化酶(SOD)的含量。结果 1)复苏后0 h,2%、4%、6%PolyCHb组与对照组的MAP(mmHg)为117.25±5.97 vs 132.00±5.98 vs 147.75±5.82 vs 101.13±6.15(P<0.05)。2)复苏后6 h,4%、6%PolyCHb组与对照组相比,MAP(mmHg)分别为114.75±5.26 vs 118.63±13.81 vs 88.38±8.00(P<0.05);2%、4%PolyCHb组和对照组的PaCO_2(mmHg)为37.62±3.62 vs 37.13±4.70 vs 25.38±4.10(P<0.05);2%PolyCHb组和对照组的PaO_2/FiO_2值为463.69±44.74 vs 403.57±59.73,BALF蛋白浓度值(mg/mL)为0.13±0.04 vs 0.23±0.06(P<0.05), MDA(nmol/mg protein)为1.17±0.11 vs 1.47±0.20,MPO(U/g tissue)为0.37±0.08 vs 0.76±0.23(均为P<0.05);2%、4%、6%PolyCHb组和对照组的SOD(U/mg protein)为2.04±0.27 vs 1.87±0.30 vs 1.63±0.10 vs 1.83±0.04(均为P>0.05)。结论具有携氧功能的低浓度PolyCHb可以减轻失血性休克大鼠肺损伤;但随着PolyCHb浓度的升高,大鼠氧化应激增强,反而加重肺损伤。
        Objective To explore the effect of PolyCHb with different concentrations on pulmonary tissue of resuscitating hemorrhagic shock rats.Methods The hemorrhagic shock model was established, and 40 Wistar rats were randomly divided into one of the five groups(8 rats each group):sham group(femoral artery/vein intubation); 0.9%NaCl(control) group(femoral artery/vein intubation and resuscitation with 0.9% NaCl solution); 2%,4%, and 6% PolyCHb groups(femoral artery/vein intubation and resuscitation with corresponding concentration PolyCHb). The mean arterial pressure(MAP), carbon dioxide pressure(PaCO_2) and pulmonary oxygenation index(PaO_2/FiO_2) were measured at the following four time-points:baseline immeditately before hemorrhage,,shock,immediately after resuscitation and 6 h after resuscitation, respectively.The rats were sacrificed by bloodletting at 6 h after resuscitation. The bronchoalveolar lavage fluid(BALF) was collected to determine the protein content; the wet-to-dry weight(W/D) ratio of lung tissue was measured. The lung tissue was excised to prapare 10% tissue homogenates, and the concentration of malondialdehyde(MDA), myeloperoxidase(MPO), and superoxide dismutase(SOD) of it were measured.Results 1) 0 h MAP(mmHg) of different concentration of PolyCHb(2%,4%,6%) groups and control group were 117.25±5.97 vs 132.00±5.98 vs 147.75±5.82 vs 101.13±6.15(P<0.05); 2) 6 h MAP(mmHg) of 4%, 6%PolyCHb groups and control group were 114.75±5.26 vs 118.63±13.81 vs 88.38±8.00(P<0.05); the PaCO_2(mmHg) of 2%, 4% PolyCHb groups and control group were 37.62±3.62 vs 37.13±4.70 vs 25.38±4.10(P<0.05); PaO_2/FiO_2 in 2% PolyCHb group and control group were 463.69±44.74 vs 403.57±59.73, and the protein content(mg/ml) of BALF were 0.13±0.04 vs 0.23±0.06(P<0.05); the concentration of MDA(nmol/mg protein) were 1.17±0.11 vs 1.47±0.20, and MPO(U/g tissue) were 0.37±0.08 vs 0.76±0.23(P<0.05); the levels of SOD(U/mg protein) in 2%,4%, 6% PolyCHb groups and control group were 2.04±0.27 vs 1.87±0.30 vs 1.63±0.10 vs 1.83±0.04(P>0.05). Conclusion Low concentration PolyCHb could reduce the lung injury in hemorrhagic shock model, however, the degree of oxidative stress and lung injury increase with the increase of PolyCHb concentration.
引文
[1] Ijad K,Yu X,Axel S,et al.Preclinical in vitro safety investigations of submicron sized hemoglobin based oxygen carrier HbMP-700.J Artif Organs,2018,42(5):549-559.
    [2] 李琬晶,王京,李遥金,等.PolyCHb携氧复苏液影响失血性休克大鼠EPO表达的初步分析.中国输血杂志,2018,31(4):342-345.
    [3] Adrien B,Anatole H,Jacques D.Resuscitative strategies in traumatic hemorrhagic shock.Ann Intensive Care,2013,3(1):1.
    [4] Song Z,Zhao X,Liu M,et al.Recombinant human brain natriuretic peptide attenuates trauma-/haemorrhagic shock-induced acute lung injury through inhibiting oxidative stress and the NF-κB-dependent inflammatory/MMP-9 pathway.Int J Exp Pathol 2015,96(6):406-413.
    [5] 桑培培,李遥金,刘嘉馨,等.羟乙基淀粉加多聚人胎盘血红蛋白对失血性休克大鼠肠缺血再灌注损伤的影响.中国输血杂志,2017,30(4):358-362.
    [6] Wentao Zhou,Shen Li,Jiaxin Liu,et al.An optimal polymerization process for low mean molecular weight HBOC with lower dimer.Artif Cells Blood Substit Immobil Biotechnol,2015,43(3):148-151.
    [7] 周祖钊,朱文雅,彭小玲,等.BCA法测定微量蛋白质的初步评价.临床检验杂志,1992(3):134-135.
    [8] Costantini TW,Deree J,Martins JO,et al.A novel fluid resuscitation strategy modulates pulmonary transcription factor activation in a murine model of hemorrhagic shock.Clinics,2010,65(6):621-628.
    [9] 刘华琴,李勇,刘向东,等.羟乙基淀粉130/0.4不同复苏方案对失血性休克大鼠肺损伤的早期影响及机制.中国药理学通报,2010,26(1):99-103.
    [10] Dutton RP.Management of traumatic haemorrhage-the US perspective.Anaesthesia,2015,70(1):108-111.
    [11] Roff R,Bertil B,Vladimir C,et al.The European guideline on management of major bleeding and coagulopathy following trauma:fourth edition.Crit Care,2016,20(2):1-55.
    [12] 周虹,赵敬湘.血浆代用品//杨成民,刘进,越桐茂.中华输血学.北京:人民卫生出版社,2017:902-904.
    [13] Yaojin Li,Dong Yan,Shasha Hao,et al.Polymerized human placenta hemoglobin improves resuscitative efficacy of hydroxyethyl starch in a rat hemorrhagic shock model.Artif Cells Blood Substit Immobil Biotechnol,2015,43(3):174-179.
    [14] Alayash AI.Blood substitutes:why haven′t we been more successful?Trends Biotechnol,2014,32(4) :177-185.
    [15] Dube GP,Pitman AN,Mackenzie CF.Relative efficacies of HBOC-201 and polyheme to increase oxygen transport compared to blood and crystalloids."2017 Military Supplement".Shock,2017-09-04[2018-12-22].https://www.ncbi.nlm.nih.gov/pubmed/29140831.
    [16] Hyakutake,T,Kishimoto,T.Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels,J Artif Organs,2017,20(4) 341-349.
    [17] 李伟楠,周文涛,李燊,等.输注聚合人胎盘血红蛋白对大鼠氧化损伤的初步研究.中国输血杂志,2017,30(4):354-357.
    [18] Qian Y ,Wei W ,Qian L ,et al.High-dose polymerized hemoglobin fails to alleviate cardiac ischemia/reperfusion injury due to induction of oxidative damage in coronary artery.Oxidative Med Cell Longevity,2015,2015:1-10.
    [19] Meng,F,Kassa,T,Alayash AI,et al.Comprehensive biochemical and biophysical characterization of hemoglobin-based oxygen carrier therapeutics:all HBOCs are not created equally,Bioconjug Chem,2018 29(5) ,1560-1575.
    [20] Alomari,E,Ronda,L,Bruno,S,et al.High- and low-affinity PEGylated hemoglobin-based oxygen carriers:differential oxidative stress in a Guinea pig transfusion model.Free Radic Biol Med,2018,124(4),299-310.
    [21] Wang Y,Zhao X,Li F,et al.Polymerized human placenta hemoglobin (PolyPHb) attenuates myocardial infarction injury in rats.Artif Cells Blood Substit Immobil Biotechnol,2012,40( 1-2) :7-13.